Abstract

The 2 μm emission spectra and lifetimes of Ho3+ ions in germanate glasses with different doping concentrations were investigated. The Judd-Ofelt parameters, radiative transition rates, and emission cross-section of Ho3+ were calculated based on the absorption and emission spectra. The energy transfer rate to hydroxyl groups and non-radiative rate of 5I7 level were calculated by fitting the variations of lifetimes vs. the doping concentrations. Besides, the unclad fibers with highly Ho3+ doped (6 × 1020 cm−3) were fabricated and pumped using a homemade 1.94 μm fiber laser, and the peak of emission spectra showed a redshift with the increasing fiber length.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient mid-infrared 2 μm emission in Ho3+/Yb3+-codoped germanate glass

Muzhi Cai, Beier Zhou, Fengchao Wang, Ying Tian, Jiajia Zhou, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 5(6) 1431-1439 (2015)

Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Thermal and luminescent properties of 2  μm emission in thulium-sensitized holmium-doped silicate-germanate glass

Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, and Xianghua Zhang
Photon. Res. 4(6) 214-221 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [Crossref]
  2. G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2 μm continuous wave laser with a double-end dif fusion-bonded Tm, Ho: YVO4 crystal,” Chin. Opt. Lett. 11(9), 091404 (2013).
    [Crossref]
  3. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
    [Crossref]
  4. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
    [Crossref]
  5. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
    [Crossref] [PubMed]
  6. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
    [Crossref]
  7. S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [Crossref] [PubMed]
  8. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  9. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [Crossref] [PubMed]
  10. X. Yang, H. Huang, D. Shen, H. Zhu, and D. Tang, “2.1 μm Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG laser,” Chin. Opt. Lett. 12(12), 121405 (2014).
    [Crossref]
  11. X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
    [Crossref]
  12. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
    [Crossref]
  13. L. Nemec and J. Gotz, “Infrared absorption of OH− in E glass,” J. Am. Ceram. Soc. 53(9), 526 (1970).
    [Crossref]
  14. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
    [Crossref] [PubMed]
  15. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  16. X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10(10), 101601 (2012).
    [Crossref]
  17. W. F. Krupke, “Optical Absorption and Fluorescence Intensities in Several Rare-Earth-Doped Y2O3 and LaF3 Single Crystals,” Phys. Rev. 145(1), 325–337 (1966).
    [Crossref]
  18. M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
    [Crossref]
  19. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [Crossref] [PubMed]
  20. R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
    [Crossref]
  21. X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
    [Crossref]
  22. Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
    [Crossref]
  23. X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
    [Crossref]
  24. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
    [Crossref]

2014 (5)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

X. Yang, H. Huang, D. Shen, H. Zhu, and D. Tang, “2.1 μm Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG laser,” Chin. Opt. Lett. 12(12), 121405 (2014).
[Crossref]

2013 (3)

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2 μm continuous wave laser with a double-end dif fusion-bonded Tm, Ho: YVO4 crystal,” Chin. Opt. Lett. 11(9), 091404 (2013).
[Crossref]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

2012 (2)

2011 (1)

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (2)

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[Crossref] [PubMed]

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

2003 (1)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

2001 (1)

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

1998 (1)

1995 (2)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[Crossref]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

1972 (1)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

1970 (1)

L. Nemec and J. Gotz, “Infrared absorption of OH− in E glass,” J. Am. Ceram. Soc. 53(9), 526 (1970).
[Crossref]

1966 (1)

W. F. Krupke, “Optical Absorption and Fluorescence Intensities in Several Rare-Earth-Doped Y2O3 and LaF3 Single Crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Amzajerdian, F.

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Carter, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Chavez-Pirson, A.

Chen, D.

Chen, G. X.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

de Waal, H.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[Crossref]

Donlan, V. L.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Dvoyrin, V. V.

Faber, A. J.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[Crossref]

Fan, S.

Fan, X.

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Fang, Q.

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

Gao, S.

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

Geng, J.

Gotz, J.

L. Nemec and J. Gotz, “Infrared absorption of OH− in E glass,” J. Am. Ceram. Soc. 53(9), 526 (1970).
[Crossref]

Gu, Y.

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Haub, J.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Hemming, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Hu, L.

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10(10), 101601 (2012).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

Huang, F.

Huang, H.

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jackson, S. D.

Jiang, S.

Jiang, Z. H.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Kieu, K.

King, T.

Krupke, W. F.

W. F. Krupke, “Optical Absorption and Fluorescence Intensities in Several Rare-Earth-Doped Y2O3 and LaF3 Single Crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Kuan, P.

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Kurkov, A. S.

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Li, G.

Li, K.

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10(10), 101601 (2012).
[Crossref]

Li, W.

Li, X.

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Liu, X.

Luo, T.

Marakulin, A. V.

Matsinger, B. H.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Nemec, L.

L. Nemec and J. Gotz, “Infrared absorption of OH− in E glass,” J. Am. Ceram. Soc. 53(9), 526 (1970).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Petersen, E.

Peyghambarian, N.

Shan, L.

Shen, D.

Shi, W.

Si, L.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

Simakov, N.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Soga, N.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Surratt, G. T.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Tang, D.

Tang, Y.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
[Crossref]

Tian, Y.

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10(10), 101601 (2012).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

Wang, M.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

Wang, Q.

Wang, X.

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10(10), 101601 (2012).
[Crossref]

Wang, Y.

Weber, M. J.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Wu, J.

Xiao, H.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

Xu, J.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
[Crossref]

Xu, R.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

Yan, Y.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[Crossref]

Yang, G. F.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Yang, J.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
[Crossref]

Yang, X.

Yao, B.

Yao, Z.

Zhang, J.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

Zhang, Q. Y.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Zhou, P.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

Zhu, H.

Zong, J.

Ceram. Int. (1)

X. Wang, X. Fan, S. Gao, K. Li, and L. Hu, “Spectroscopic properties of Tm3+–Ho3+ codoped SiO2–Al2O3–CaO–SrO glasses,” Ceram. Int. 40(7), 9751–9756 (2014).
[Crossref]

Chin. Opt. Lett. (4)

High Power Laser Science and Engineering (1)

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Science and Engineering 1(3-4), 123–125 (2013).
[Crossref]

J. Alloys Compd. (1)

X. Fan, K. Li, X. Li, P. Kuan, X. Wang, and L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped tellurite glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

L. Nemec and J. Gotz, “Infrared absorption of OH− in E glass,” J. Am. Ceram. Soc. 53(9), 526 (1970).
[Crossref]

J. Appl. Phys. (1)

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109(5), 053503 (2011).
[Crossref]

J. Chem. Phys. (1)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical Transition Probabilities for Trivalent Holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

J. Fluoresc. (1)

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

J. Non-Cryst. Solids (2)

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (2)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Photonics Research (1)

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Research 1(1), 52–57 (2013).
[Crossref]

Phys. Rev. (1)

W. F. Krupke, “Optical Absorption and Fluorescence Intensities in Several Rare-Earth-Doped Y2O3 and LaF3 Single Crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 IR transmittance spectrum of G4; the inset shows the absorption coefficients of all samples.
Fig. 2
Fig. 2 Subtracted absorption spectrum of G4.
Fig. 3
Fig. 3 Energy level diagram of Ho3+ in the lead-germanate glass; the dash lines represent the non-radiative processes, the solid lines stand for absorption (red line) and emission (A31 and A21) transition of Ho3+ ions, and the solid curve means the energy transfer from Ho3+ to OH groups.
Fig. 4
Fig. 4 (a) Normalized emission spectra of G1 to G6; (b) overlaps of absorption and emission cross-section spectra of the 2 μm band; (c) ( τ m 1 τ r 1 ) (black squares) and integrated 2 μm emission intensity (red squares) as a function of Ho3+ ions; τ m and τ r are the measured and calculated lifetimes of 5I7 level, respectively; (d) fluorescence decay curves of Ho3+ doped germanate glasses;.
Fig. 5
Fig. 5 Normalized infrared emission spectra of 4 wt% Ho2O3 doped germanate unclad fibers with different fiber length under the excitation of 1940 nm fiber laser.

Tables (2)

Tables Icon

Table 1 Radiative transition rates (Ar), branching ratios (β), and radiative lifetimes (τr) for different energy levels

Tables Icon

Table 2 Doping concentrations (NHo), energy transfer rate to OH groups (WOH), quantum efficiency (η), measured lifetimes (τm) at 5I7 level, and the product of τ m × NHo of Ho3+ in G1 to G6 glasses.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α OH = 1 l ln( T 0 T )
N OH = N A εl ln( T 0 T )
S ed (aJ,b J )= t=2,4,6 Ω t | aJ U (t) b J | 2
band κ( λ ) dλ= 8 π 3 e 2 λ ¯ N 3ch(2J+1) ( n 2 +2) 9n S ed (aJ,b J )
σ em = λ 4 A r 8πc n 2 λI(λ) λI( λ )dλ  
τ m 1 = τ r 1 + W 21 + W OH
W OH = 9 2π N H o 3+ (α N OH ) τ r N 0 2
R 0 6 = 6c τ r 16 π 4 n 2 g low D g up D σ emi D ( λ ) σ abs A ( λ )dλ
τ m -1 - τ r -1 = W 21 + 9 2π N H o 3+ (α N OH ) τ r N 0 2
G=exp[ σ g σ a N τ m l]

Metrics