Abstract

We report on a solution-based method to fabricate a multidimensional heterojunction composed of one-dimensional zinc oxide nanorods (ZnO NRs) decorated with zero-dimensional cupric oxide nanoparticles (CuO NPs). The ZnO NRs were vertically grown on a reduced graphene oxide (rGO) thin film, and the sensing properties of the synthesized heterojunction were investigated under ultraviolet (UV) irradiation at room temperature to assess their practical application. The CuO NPs decorated on the ZnO NRs play an essential role in creating numerous p-n heterojunctions at the interface and remediating oxygen-related defects in the ZnO NRs. Relative to the ZnO NR structures without CuO NPs, the CuO/ZnO multidimensional heterostructures show higher sensitivity and faster response, demonstrating their potential use as UV sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterojunction of ZnO nanoparticle/PMMA and its ultraviolet electroluminescence

Song Gao, Su-Ling Zhao, Zheng Xu, Yi-Fan Yang, Zhi-Min Liu, and Xiao-Yi Xie
Opt. Lett. 39(9) 2633-2636 (2014)

Exciton localization and ultralow onset ultraviolet emission in ZnO nanopencils-based heterojunction diodes

Junyan Jiang, Yuantao Zhang, Chen Chi, Yan Long, Xu Han, Bin Wu, Baolin Zhang, and Guotong Du
Opt. Express 24(18) 20938-20946 (2016)

Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
    [Crossref]
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  3. W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
    [Crossref]
  4. A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
    [Crossref]
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [Crossref] [PubMed]
  6. S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
    [Crossref] [PubMed]
  7. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
    [Crossref] [PubMed]
  8. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
    [Crossref]
  9. Y.-W. Baek and Y.-J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409(8), 1603–1608 (2011).
    [Crossref] [PubMed]
  10. H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
    [Crossref]
  11. S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
    [Crossref]
  12. T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
    [Crossref] [PubMed]
  13. G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
    [Crossref]
  14. B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
    [Crossref]
  15. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
    [Crossref]

2012 (2)

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

2011 (2)

Y.-W. Baek and Y.-J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409(8), 1603–1608 (2011).
[Crossref] [PubMed]

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

2010 (2)

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

2009 (1)

G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

2005 (2)

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

2004 (4)

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

2003 (1)

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Alivisatos, A. P.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

An, Y.-J.

Y.-W. Baek and Y.-J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409(8), 1603–1608 (2011).
[Crossref] [PubMed]

Bae, M. H.

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

Baek, Y.-W.

Y.-W. Baek and Y.-J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409(8), 1603–1608 (2011).
[Crossref] [PubMed]

Binh, N. T.

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Chen, J.

G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Chen, Y.

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

Chichibu, S. F.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Chung, J. S.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Cui, Y.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Cuong, T. V.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Deo, M.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Dong, X.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Fu, Y.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Fuke, S.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Haga, K.

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Han, J.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Hannoyer, B.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Hughes, S. M.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Hur, S. H.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Jog, J.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Jun, Y. H.

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

Jung, S. W.

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

Kashiwaba, Y.

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Kawasaki, M.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Kim, E. J.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Kim, J. S.

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Koinuma, H.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Lee, H.-J.

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

Li, J.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Li, X.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Limpijumnong, S.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Liu, Y.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Lu, G.

G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Ma, H.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Ma, Y.

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

Makino, T.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Manna, L.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Milliron, D. J.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

More, M.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Ocola, L. E.

G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Ogale, S.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Ohno, H.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Ohtani, K.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Ohtani, M.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Ohtomo, A.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Onuma, T.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Park, C. H.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Park, W. I.

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Sauvage, X.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Segawa, Y.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Shao, C.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Shao, Z.

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

Shin, E. W.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Shinde, D.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Song, Y.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Sumiya, M.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Tien, H. N.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Tsukazaka, A.

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

Van Luan, H.

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

Wakatsuki, K.

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Wang, C.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Wang, L.-W.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wei, S.

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

Wei, S.-H.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Xue, H.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yengantiwar, A.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Yi, G.-C.

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

Yu, C.

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Zhang, B. P.

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Zhang, L.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Zhang, S. B.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Appl. Catal. B (1)

H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, and X. Dong, “Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction,” Appl. Catal. B 102(3-4), 417–423 (2011).
[Crossref]

Appl. Phys. Lett. (3)

G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Appl. Phys. Lett. 85(21), 5052 (2004).
[Crossref]

W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82(6), 964 (2003).
[Crossref]

J. Mater. Chem. (1)

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

J. Mol. Catal. Chem. (1)

S. Wei, Y. Chen, Y. Ma, and Z. Shao, “Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance,” J. Mol. Catal. Chem. 331(1-2), 112–116 (2010).
[Crossref]

J. Nanosci. Nanotechnol. (1)

T. V. Cuong, H. N. Tien, H. Van Luan, J. S. Chung, E. W. Shin, S. H. Hur, and E. J. Kim, “Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer,” J. Nanosci. Nanotechnol. 12(4), 3313–3316 (2012).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, “Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity,” J. Phys. Chem. C 114(17), 7920–7925 (2010).
[Crossref]

Nanotechnology (1)

B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15(6), S382–S388 (2004).
[Crossref]

Nat. Mater. (2)

A. Tsukazaka, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005).
[Crossref]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Nature (1)

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430(6996), 190–195 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Sci. Total Environ. (1)

Y.-W. Baek and Y.-J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409(8), 1603–1608 (2011).
[Crossref] [PubMed]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the solution-processed multidimensional heterojunction structures.
Fig. 2
Fig. 2 The birds-eye view of the SEM micrographs of (a) the ZnO NRs grown on the ITO substrate and (b) grown on GO films coated on the ITO substrate. The AFM images of the ITO substrate (c) before and (d) after spray-coating the GO films.
Fig. 3
Fig. 3 TEM images and EDS analyses for the atomic concentration of the CuO NPs coated on the ZnO NRs.--
Fig. 4
Fig. 4 Photoluminescence spectra of the bare ZnO NRs and the CuO-ZnO NCs.
Fig. 5
Fig. 5 (a) IV characteristics of the bare ZnO NRs and CuO-ZnO NCs before and after illumination with a wavelength of 370 nm and (b) schematic diagram showing charge generation and transfer by UV light. The rise and fall time for (c) bare ZnO NRs and (d) CuO-ZnO NCs under Xenon lamp illumination.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ο 2 ( g ) + e Ο 2 ( ad )
hv e + h +
Ο 2 ( ad ) + h + Ο 2 ( g )

Metrics