Abstract

We demonstrate a new type of smart composite based on carbon soot nanoparticles (CSP) and Poly(dimethylsiloxane). The addition of CSP in this polymeric matrix yields a composite with photomechanical response triggered by IR laser irradiation. The load capacity of this optically driven material ranged between 10 and 16 kPa depending on the CSP concentration in the composites. These photomechanical actuation features promises a good alternative for low-cost smart composite materials for photonic applications such as optically reconfigurable surfaces and optical actuating-sensing devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-laser-based fabrication of metal/PDMS composite microstructures for mechanical force sensing

Yasutaka Nakajima, Kotaro Obata, Manan Machida, Arndt Hohnholz, Jürgen Koch, Oliver Suttmann, and Mitsuhiro Terakawa
Opt. Mater. Express 7(11) 4203-4213 (2017)

Silane functionalization effects on dispersion of alumina nanoparticles in hybrid carbon fiber composites

Alex Selimov, Sanjida Akter Jahan, Eric Barker, Peter Dackus, Declan Carolan, Ambrose Taylor, and Seetha Raghavan
Appl. Opt. 57(23) 6671-6678 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).
  2. K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).
    [Crossref]
  3. D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
    [Crossref]
  4. D. J. Welker and M. G. Kuzyk, “Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device,” Opt. Lett. 64, 417–418 (1997).
    [Crossref]
  5. H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
    [Crossref]
  6. L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
    [Crossref]
  7. J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
    [Crossref]
  8. R. Geryak and V. V. Tsukruk, “Reconfigurable and actuating structures from soft materials,” Soft Matter 10, 1246–1263 (2014).
    [Crossref] [PubMed]
  9. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
    [Crossref]
  10. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
    [Crossref]
  11. J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
    [Crossref]
  12. A. C. Kuo, “Poly (dimethylsiloxane),” Polymer data handbook pp. 411–435 (1999).
  13. A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
    [Crossref]
  14. Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
    [Crossref] [PubMed]
  15. S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
    [Crossref] [PubMed]
  16. J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
    [Crossref]
  17. F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
    [PubMed]
  18. J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
    [Crossref] [PubMed]
  19. Y. Feng, N. Dong, Y. Li, X. Zhang, C. Chang, S. Zhang, and J. Wang, “Host matrix effect on the near infrared saturation performance of graphene absorbers,” Opt. Mater. Express 5, 802–808 (2015).
    [Crossref]
  20. S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
    [Crossref]
  21. R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
    [Crossref]
  22. P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
    [Crossref]
  23. M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).
  24. R. W. Ogden, “Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326, 565–584 (1972).
    [Crossref]
  25. H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer, 2007).
  26. R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
    [Crossref]
  27. F. M. Sánchez-Arévalo and G. Pulos, “Use of digital image correlation to determine the mechanical behavior of materials,” Mater. Charact. 59, 1572–1579 (2008).
    [Crossref]
  28. F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
    [Crossref]
  29. G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
    [Crossref]
  30. Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
    [Crossref]
  31. X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
    [Crossref]
  32. S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).
  33. A. M. Alshehri, K. L. N. Deepak, D. T. Marquez, S. Desgreniers, and V. R. Bhardwaj, “Localized nanoclusters formation in pdms upon irradiation with femtosecond laser,” Opt. Mater. Express 5, 858–869 (2015).
    [Crossref]
  34. P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
    [Crossref]
  35. J. R. Vélez-Cordero and J. Hernández-Cordero, “Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers,” Int. J. Therm. Sci. 96, 12–22 (2015).
    [Crossref]
  36. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
    [Crossref]

2015 (3)

2014 (5)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

R. Geryak and V. V. Tsukruk, “Reconfigurable and actuating structures from soft materials,” Soft Matter 10, 1246–1263 (2014).
[Crossref] [PubMed]

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

2013 (3)

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

2012 (5)

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

2011 (2)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
[Crossref]

2010 (2)

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

2009 (2)

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

2008 (3)

F. M. Sánchez-Arévalo and G. Pulos, “Use of digital image correlation to determine the mechanical behavior of materials,” Mater. Charact. 59, 1572–1579 (2008).
[Crossref]

Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
[Crossref]

S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
[Crossref]

2005 (2)

A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
[Crossref]

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

2004 (1)

R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
[Crossref]

1997 (1)

D. J. Welker and M. G. Kuzyk, “Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device,” Opt. Lett. 64, 417–418 (1997).
[Crossref]

1994 (1)

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[Crossref]

1993 (1)

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).
[Crossref]

1972 (1)

R. W. Ogden, “Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326, 565–584 (1972).
[Crossref]

1881 (1)

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Abu Osman, N. A.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Adachi, K.

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Ahir, S.

S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
[Crossref]

Alshehri, A. M.

Aswal, V. K.

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

Ataollahi, F.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Bau, H.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Bessler, N.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Bhardwaj, V. R.

Bhatt, H.

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

Brinson, H. F.

H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer, 2007).

Brinson, L. C.

H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer, 2007).

Burkhead, T.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Buseck, P. R.

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Canavese, G.

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

Castellino, M.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Cauda, V.

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

Chang, C.

Chaudhari, J. C.

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

Chen, X.

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

Chen, Z.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Dalilottojari, A.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Dawson, N. J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
[Crossref]

Deepak, K. L. N.

Desgreniers, S.

Ding, Z.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Dong, N.

Du, S.

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

Feng, X.

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

Feng, Y.

Fleischman, A.

A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
[Crossref]

García-Fernández, T.

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

Gelencsér, A.

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Geryak, R.

R. Geryak and V. V. Tsukruk, “Reconfigurable and actuating structures from soft materials,” Soft Matter 10, 1246–1263 (2014).
[Crossref] [PubMed]

Giorcelli, M.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Gou, J.

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

Guastella, S.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Hautefeuille, M.

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

Hernández-Cordero, J.

J. R. Vélez-Cordero and J. Hernández-Cordero, “Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers,” Int. J. Therm. Sci. 96, 12–22 (2015).
[Crossref]

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

Hong, K.-S.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Hu, J.

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

Huang, H.

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

Huang, W.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Huang, Y.

S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
[Crossref]

Iqbal, N.

S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).

Jadav, G. L.

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

Jagdale, P.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Jang, N.-S.

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

Jiang, Y.

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

Johnston, I. D.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

Kim, J.-K.

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

Kim, J.-M.

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

Kim, S.-H.

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

King, B.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Kong, J.-H.

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

Kuo, A. C.

A. C. Kuo, “Poly (dimethylsiloxane),” Polymer data handbook pp. 411–435 (1999).

Kuzyk, M. G.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

D. J. Welker and M. G. Kuzyk, “Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device,” Opt. Lett. 64, 417–418 (1997).
[Crossref]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[Crossref]

Leng, J.

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

Li, J.

Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
[Crossref]

Li, M.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Li, S.

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

Li, Y.

Liu, Y.

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

Loomis, J.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Lu, H.

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

Lu, J.

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

Luchette, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

Ma, P.-C.

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

Maqsood, A.

S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).

Marom, G.

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

Marquez, D. T.

Mata, A.

A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
[Crossref]

Mauk, M.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

McCluskey, D. K.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

Moradi, A.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Neal, J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer,”. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
[Crossref]

Ogden, R. W.

R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
[Crossref]

R. W. Ogden, “Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326, 565–584 (1972).
[Crossref]

Palffy- Muhoray, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

Palffy-Muhoray, P.

Panchapakesan, B.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Pimentel-Domínguez, R.

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

Pingguan-Murphy, B.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Pirri, C. F.

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

Pósfai, M.

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Pramanik, S.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Pulos, G.

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

F. M. Sánchez-Arévalo and G. Pulos, “Use of digital image correlation to determine the mechanical behavior of materials,” Mater. Charact. 59, 1572–1579 (2008).
[Crossref]

Purnawali, H.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Roy, S.

A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
[Crossref]

Saccomandi, G.

R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
[Crossref]

Sagar, S.

S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).

Sánchez-Arévalo, F.

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

Sánchez-Arévalo, F. M.

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

F. M. Sánchez-Arévalo and G. Pulos, “Use of digital image correlation to determine the mechanical behavior of materials,” Mater. Charact. 59, 1572–1579 (2008).
[Crossref]

Sgura, I.

R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
[Crossref]

Shahzad, M. I.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Shahzad, N.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Siddiqui, N. A.

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

Singh, P. S.

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

Stassi, S.

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

Sun, L.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Tagliaferro, A.

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Tan, C. K. L.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

Tang, C.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Terentjev, E.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
[Crossref]

Tompa, E.

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Tracey, M. C.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

Tsukruk, V. V.

R. Geryak and V. V. Tsukruk, “Reconfigurable and actuating structures from soft materials,” Soft Matter 10, 1246–1263 (2014).
[Crossref] [PubMed]

Uchino, K.

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).
[Crossref]

Vélez-Cordero, J. R.

J. R. Vélez-Cordero and J. Hernández-Cordero, “Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers,” Int. J. Therm. Sci. 96, 12–22 (2015).
[Crossref]

Villagran-Muniz, M.

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

Wan Abas, W. A. B.

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

Wang, C.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Wang, H.

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

Wang, J.

Y. Feng, N. Dong, Y. Li, X. Zhang, C. Chang, S. Zhang, and J. Wang, “Host matrix effect on the near infrared saturation performance of graphene absorbers,” Opt. Mater. Express 5, 802–808 (2015).
[Crossref]

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Wang, Q.

Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
[Crossref]

Welker, D. J.

D. J. Welker and M. G. Kuzyk, “Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device,” Opt. Lett. 64, 417–418 (1997).
[Crossref]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[Crossref]

Wen, W.

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

Wen, Z.

Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
[Crossref]

Xie, J.

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

Xu, P.

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Yang, S.

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

Zhang, S.

Zhang, X.

Zhao, Y.

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

Zhu, Y.

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

Adv. Funct. Mater. (1)

Z. Wen, Q. Wang, and J. Li, “Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts,” Adv. Funct. Mater. 18, 959–964 (2008).
[Crossref]

Appl. Phys. Lett. (2)

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[Crossref]

H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, “Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite,” Appl. Phys. Lett. 96, 084102 (2010).
[Crossref]

Atmos. Chem. Phys. Discuss. (1)

P. R. Buseck, K. Adachi, A. Gelencsér, E. Tompa, and M. Pósfai, “Are black carbon and soot the same?” Atmos. Chem. Phys. Discuss.,  12, 24821–24846 (2012).
[Crossref]

Biomed. Microdevices (2)

J. Wang, Z. Chen, M. Mauk, K.-S. Hong, M. Li, S. Yang, and H. Bau, “Self-actuated, thermo-responsive hydrogel valves for lab on a chip,” Biomed. Microdevices 7, 313–322 (2005).
[Crossref]

A. Mata, A. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7, 281–293 (2005).
[Crossref]

Carbon (1)

J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, “Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors,” Carbon 77, 199 – 207 (2014).
[Crossref]

Compos. Part A-Appl. S. (1)

P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A-Appl. S. 41, 1345–1367 (2010).
[Crossref]

Comput. Mech. (1)

R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to experimental data,” Comput. Mech. 34, 484–502 (2004).
[Crossref]

Int. J. Therm. Sci. (1)

J. R. Vélez-Cordero and J. Hernández-Cordero, “Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers,” Int. J. Therm. Sci. 96, 12–22 (2015).
[Crossref]

J. Membrane Sci. (1)

G. L. Jadav, V. K. Aswal, H. Bhatt, J. C. Chaudhari, and P. S. Singh, “Influence of film thickness on the structure and properties of PDMS membrane,” J. Membrane Sci. 415416, 624–634 (2012).
[Crossref]

J. of Micromech. Microeng. (1)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” J. of Micromech. Microeng. 24, 035017 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D. Appl. Phys. (1)

X. Feng, J. Hu, X. Chen, J. Xie, and Y. Liu, “Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions,” J. Phys. D. Appl. Phys. 42, 042001 (2009).
[Crossref]

J. Phys.: Conf. Ser. (2)

S. Sagar, N. Iqbal, and A. Maqsood, “Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite,” J. Phys.: Conf. Ser. 439, 012024 (2013).

M. I. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, “Study of carbon nanotubes based polydimethylsiloxane composite films,” J. Phys.: Conf. Ser. 439, 012010 (2013).

Mater. Charact. (2)

F. M. Sánchez-Arévalo and G. Pulos, “Use of digital image correlation to determine the mechanical behavior of materials,” Mater. Charact. 59, 1572–1579 (2008).
[Crossref]

F. M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagran-Muniz, “Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy,” Mater. Charact. 60, 775–782 (2009).
[Crossref]

Mater. Des. (1)

L. Sun, W. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials: A review,” Mater. Des. 33, 577 – 640 (2012).
[Crossref]

MRS Bull. (1)

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).
[Crossref]

Nanotechnology (1)

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23, 045501 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy- Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,”. Opt. Commun. 284, 991–993 (2011).
[Crossref]

Opt. Lett. (1)

D. J. Welker and M. G. Kuzyk, “Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device,” Opt. Lett. 64, 417–418 (1997).
[Crossref]

Opt. Mater. Express (2)

Polymer (1)

S. Ahir, Y. Huang, and E. Terentjev, “Polymers with aligned carbon nanotubes: Active composite materials,” Polymer 49, 3841–3854 (2008).
[Crossref]

Proc. Am. Assoc. Adv. Sci. (1)

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences (1)

R. W. Ogden, “Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326, 565–584 (1972).
[Crossref]

Prog. Polym. Sci. (1)

J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shapememory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci. 37, 1720–1763 (2012).
[Crossref]

Sensors (2)

Y. Jiang, H. Wang, S. Li, and W. Wen, “Applications of micro/nanoparticles in microfluidic sensors: A review,” Sensors 14, 6952–6964 (2014).
[Crossref] [PubMed]

S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors 14, 5296–5332 (2014).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

R. Pimentel-Domínguez, F. Sánchez-Arévalo, M. Hautefeuille, and J. Hernández-Cordero, “Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder,” Smart Mater. Struct. 22, 037001 (2013).
[Crossref]

Soft Matter (1)

R. Geryak and V. V. Tsukruk, “Reconfigurable and actuating structures from soft materials,” Soft Matter 10, 1246–1263 (2014).
[Crossref] [PubMed]

Other (3)

F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan-Murphy, W. A. B. Wan Abas, and N. A. Abu Osman, “Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates,” J. Biomed. Mater. Res. A. pp. n/a–n/a (2014).
[PubMed]

A. C. Kuo, “Poly (dimethylsiloxane),” Polymer data handbook pp. 411–435 (1999).

H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer, 2007).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (10377 KB)      Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation for different powers

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup to evaluate the opto-mechanical response of composites under infrared (IR) laser irradiation. The inset shows the chemical structure of the PDMS matrix hosting the CSP.
Fig. 2
Fig. 2 FE-SEM images cross-section area of pure PDMS and composites. a) PDMS polymeric matrix showing a soft surface; b) Morphology of the filler showing clusters of carbon soot particles (CSP); c) Carbon soot cluster embedded into PDMS-CSP(1%wt.) sample; d) Carbon soot cluster embedded into PDMS-CSP(3%wt.) sample; e) Dispersion of carbon soot into PDMS-CSP(1%wt.) sample; f) Dispersion of carbon soot into PDMS-CSP(3%wt.) sample.
Fig. 3
Fig. 3 Structural and thermal characterization of smart composites. a) X-Ray diffraction pattern of PDMS and PDMS-CSP; b) Raman spectra of pure PDMS and CSP; c) Raman spectra of PDMS-CSP composites; d) Thermal stability of PDMS, CSP and their composites.
Fig. 4
Fig. 4 Mechanical behaviour of the PDMS-CSP composites. a) Stress vs. stretch ratio curve showing the typical non-linear behaviour of hyperelastic materials; b) variation of elastic parameters as a function of CSP concentration; c) theoretical stress vs. stretch ratio curves, based on the Ogden model, used to evaluate the toughness of composites; d) Maximum stress and stretch ratio as a function of CSP concentration.
Fig. 5
Fig. 5 Photomechanical response of the PDMS-CSP composites. a)Photomechanical response of preloaded PDMS and its composites under infrared (IR) laser irradiation (550 mW); b) displacement vector field for pure PDMS under IR irradiation; c) displacement vector field for PDMS 1% CSP under IR irradiation; and d) displacement vector field for PDMS 3% CSP under IR irradiation.
Fig. 6
Fig. 6 Optical interaction between diode laser beam and PDMS composites. a) Extinction coefficient as a function of wavelength of PDMS and its composites. b) Stress as a function of time for different powers of diode laser showing activation (400 mW) and damage (700 mW) thresholds. c) Photomechanical response as a function of power and d) Images showing damage threshold at 700mW for composites ( Visualization 1).

Tables (3)

Tables Icon

Table 1 Weight loss percentage as a function of temperature for CSP, PDMS and their composites (the values were obtained with respect to 100 wt.%).

Tables Icon

Table 2 Mechanical parameters of the PDMS-CSP composites.

Tables Icon

Table 3 Micromechanical behavior of the PDMS-CSP composites under infrared irradiation (550 mW).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ ( λ ) = 2 * μ α * ( λ ( α 1 ) λ ( 1 2 α 1 ) )
u k ( x k , y k ) = A 1 x k + B 1 y k + C 1 + δ u ( x k , y k )
v k ( x k , y k ) = A 2 x k + B 2 y k + C 2 + δ v ( x k , y k )

Metrics