Abstract

We report on ultrashort pulse laser induced modifications in ultra-low expansion (ULE) glass. This silicate glass has a significant fraction of TiO2 (7.5 wt%) to ensure a low thermal expansion. Ultrafast laser irradiation generates different kinds of modifications in this glass: so-called nanogratings are formed when low irradiation power is used; while high laser powers result in heat accumulation and induce local melting. In addition, for almost all laser parameters applied, the processed material tends toward darkening. With help of Small Angle X-ray Scattering (SAXS), Focused Ion Beam (FIB) milling and optical retardance measurements we analyzed the structure of laser induced nanopores which are the basic components of nanogratings. Investigation of the mechanisms responsible for laser induced darkening were conducted by multiple techniques such as FIB milling, Electron Spin Resonance (ESR) and Raman spectroscopy. We could identify the formation of hollow cavities filled with molecular oxygen surrounded by a compressed shell of glass which contains trivalent titanium. While light scattering on the cavities causes opacity, the reduction of colorless Ti4+ (d0) to blue Ti3+ (d1) is responsible for the darkening. By combining the inscription of nanogratings with laser induced darkening it is easily possible to locally tune the type of the modification by three independent degrees of freedom (retardance, orientation of optical axis, amount of darkening) rendering ULE an ideal material for future data storage applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™

Sören Richter, Christopher Miese, Sven Döring, Felix Zimmermann, Michael J. Withford, Andreas Tünnermann, and Stefan Nolte
Opt. Mater. Express 3(8) 1161-1166 (2013)

Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2-SiO2 glasses

M. Lancry, J. Canning, K. Cook, M. Heili, D. R. Neuville, and B. Poumellec
Opt. Mater. Express 6(2) 321-330 (2016)

Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel

Ausra Cerkauskaite, Rokas Drevinskas, Alexey O. Rybaltovskii, and Peter G. Kazansky
Opt. Express 25(7) 8011-8021 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
    [Crossref]
  3. A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,”J. Phys. B: At. Mol. Opt. Phys. 43(16), 163001 (2010).
    [Crossref]
  4. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
    [Crossref]
  5. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  6. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
    [Crossref]
  7. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  8. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
    [Crossref]
  9. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
    [Crossref]
  10. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
    [Crossref]
  11. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  12. M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
    [Crossref]
  13. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
    [Crossref]
  14. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
    [Crossref]
  15. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  16. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
    [Crossref]
  17. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
    [Crossref]
  18. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  19. D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
    [Crossref]
  20. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
    [Crossref]
  21. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
    [Crossref]
  22. M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).
  23. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
    [Crossref]
  24. J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
    [Crossref]
  25. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
    [Crossref]
  26. N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
    [Crossref]
  27. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
    [Crossref]
  28. D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
    [Crossref]
  29. H. Zheng and G. C. Lim, “Laser-effected darkening in TPEs with TiO2 additives,” Opt. Las. Eng. 41(5), 791–800 (2004).
    [Crossref]
  30. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  31. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  32. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
    [Crossref] [PubMed]
  33. J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  34. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports,  441(2) 47–189 (2007).
    [Crossref]
  35. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
    [Crossref]
  36. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P.B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  37. M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
    [Crossref]
  38. D. L. Griscom, “Electron spin resonance in glasses,” J. Non-Cryst. Solids 40(1), 211–272 (1980).
    [Crossref]
  39. D. L. Griscom, “Optical properties and structure of defects in silica glass,” Nippon seramikkusu kyokai gakujutsu ronbunshi 99(10), 923–994 (1991).
    [Crossref]
  40. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
    [Crossref]
  41. D. L. Griscom, “Defect structure of glasses: Some outstanding questions in regard to vitreous silica,” J. Non-Cryst. Solids 73(1), 51–77 (1985).
    [Crossref]
  42. W. A. Weyl, Coloured Glasses (Society of Glass Technology, 1954).
  43. T. Bates, “Ligand field theory and absorption spectra of transition-metal ions in glasses,” Modern aspects of the vitreous state,  2, 195–254 (1962).
  44. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3(1), 54–114 (1970).
    [Crossref]
  45. G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
    [Crossref]
  46. J. W. M. Chon and K. Iniewski, Nanoplasmonics: Advanced Device Applications (CRC Press, 2013).
  47. A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
    [Crossref]
  48. M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
    [Crossref]
  49. H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
    [Crossref]
  50. J. Ferguson, “Spectroscopy of 3d complexes,” Prog. Inorg. Chem.  12, 159 (1970).
    [Crossref]
  51. J. A. Duffy, Bonding, Energy Levels, and Bands in Inorganic Solids (Longman, 1990).
  52. D. M. Gruen and R. L. McBeth, “The coordination chemistry of 3d transition metal ions in fused salt solutions,” Pure Appl. Chem. 6(1), 23–48 (1963).
    [Crossref]
  53. C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
    [Crossref]
  54. A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
    [Crossref]
  55. P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
    [Crossref] [PubMed]
  56. M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
    [Crossref]
  57. M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).
  58. H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
    [Crossref]
  59. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
    [Crossref]
  60. T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
    [Crossref]
  61. F. L. Galeener, “Planar rings in glasses,” Solid State Comm. 44(7), 1037–1040 (1982).
    [Crossref]
  62. E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
    [Crossref]
  63. W. Hutton and J. S. Thorp, “The vibrational spectra of MgO-Al2O3-SiO2 glasses containing TiO2,” J. Mater. Sci. 20(2), 542–551 (1985).
    [Crossref]
  64. S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
    [Crossref]
  65. A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
    [Crossref]
  66. J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895 (1953).
    [Crossref]
  67. D. M. Krol, “Femtosecond laser modification of glass,” J. Non Cryst. Solids,  354(2), 416–424 (2008).
    [Crossref]
  68. L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
    [Crossref]
  69. L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10) 2093 (1996).
    [Crossref] [PubMed]
  70. G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
    [Crossref]
  71. B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
    [Crossref]
  72. M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
    [Crossref]
  73. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
    [Crossref]
  74. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
    [Crossref]
  75. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
    [Crossref] [PubMed]
  76. K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
    [Crossref] [PubMed]

2014 (5)

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

2013 (4)

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

2012 (3)

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
[Crossref]

2011 (7)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

2010 (4)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,”J. Phys. B: At. Mol. Opt. Phys. 43(16), 163001 (2010).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

2009 (2)

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
[Crossref]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

2008 (4)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non Cryst. Solids,  354(2), 416–424 (2008).
[Crossref]

M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
[Crossref]

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

2007 (2)

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports,  441(2) 47–189 (2007).
[Crossref]

2006 (5)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

2005 (3)

2004 (2)

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

H. Zheng and G. C. Lim, “Laser-effected darkening in TPEs with TiO2 additives,” Opt. Las. Eng. 41(5), 791–800 (2004).
[Crossref]

2003 (6)

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

2002 (2)

A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
[Crossref]

G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
[Crossref]

1999 (3)

C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
[Crossref]

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

1998 (3)

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

1997 (2)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1996 (2)

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10) 2093 (1996).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

1993 (1)

E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
[Crossref]

1991 (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” Nippon seramikkusu kyokai gakujutsu ronbunshi 99(10), 923–994 (1991).
[Crossref]

1985 (2)

D. L. Griscom, “Defect structure of glasses: Some outstanding questions in regard to vitreous silica,” J. Non-Cryst. Solids 73(1), 51–77 (1985).
[Crossref]

W. Hutton and J. S. Thorp, “The vibrational spectra of MgO-Al2O3-SiO2 glasses containing TiO2,” J. Mater. Sci. 20(2), 542–551 (1985).
[Crossref]

1982 (1)

F. L. Galeener, “Planar rings in glasses,” Solid State Comm. 44(7), 1037–1040 (1982).
[Crossref]

1981 (1)

T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
[Crossref]

1980 (1)

D. L. Griscom, “Electron spin resonance in glasses,” J. Non-Cryst. Solids 40(1), 211–272 (1980).
[Crossref]

1976 (1)

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

1970 (2)

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3(1), 54–114 (1970).
[Crossref]

J. Ferguson, “Spectroscopy of 3d complexes,” Prog. Inorg. Chem.  12, 159 (1970).
[Crossref]

1963 (1)

D. M. Gruen and R. L. McBeth, “The coordination chemistry of 3d transition metal ions in fused salt solutions,” Pure Appl. Chem. 6(1), 23–48 (1963).
[Crossref]

1962 (1)

T. Bates, “Ligand field theory and absorption spectra of transition-metal ions in glasses,” Modern aspects of the vitreous state,  2, 195–254 (1962).

1953 (1)

J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895 (1953).
[Crossref]

Andrut, M.

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

Anpo, M.

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Arai, A.

Avanesyan, S.M.

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Bates, T.

T. Bates, “Ligand field theory and absorption spectra of transition-metal ions in glasses,” Modern aspects of the vitreous state,  2, 195–254 (1962).

Beresna, M.

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bhardwaj, V. R.

Bishay, A.

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3(1), 54–114 (1970).
[Crossref]

Boulon, G.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Bovatsek, J.

Bressel, L.

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Burmeister, F.

Canioni, L.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

Cardinal, T.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Chahid-Erraji, A.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

Champagnon, B.

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
[Crossref]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

Chauhan, A. P. S.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Che, M.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Chon, J. W. M.

J. W. M. Chon and K. Iniewski, Nanoplasmonics: Advanced Device Applications (CRC Press, 2013).

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

Corkum, P.B.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports,  441(2) 47–189 (2007).
[Crossref]

Cvecek, K.

Davis, K. M.

de Ligny, D.

del Pino, A. P.

A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
[Crossref]

Deschamps, T.

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
[Crossref]

Desmarchelier, R.

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Dickinson, J. T.

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Döring, S.

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Duffy, J. A.

J. A. Duffy, Bonding, Energy Levels, and Bands in Inorganic Solids (Longman, 1990).

Dussauze, M.

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

Eaton, S.

Ehrt, D.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

Ferguson, J.

J. Ferguson, “Spectroscopy of 3d complexes,” Prog. Inorg. Chem.  12, 159 (1970).
[Crossref]

Fleet, M. E.

G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
[Crossref]

Fox, K.E.

T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
[Crossref]

Fox, M. A.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Fujii, T.

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

Fukuda, T.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Furukawa, T.

T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
[Crossref]

Galeener, F. L.

F. L. Galeener, “Planar rings in glasses,” Solid State Comm. 44(7), 1037–1040 (1982).
[Crossref]

Gamaly, E. G.

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Gerlich, D.

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Gottmann, J.

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
[Crossref]

Griscom, D. L.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” Nippon seramikkusu kyokai gakujutsu ronbunshi 99(10), 923–994 (1991).
[Crossref]

D. L. Griscom, “Defect structure of glasses: Some outstanding questions in regard to vitreous silica,” J. Non-Cryst. Solids 73(1), 51–77 (1985).
[Crossref]

D. L. Griscom, “Electron spin resonance in glasses,” J. Non-Cryst. Solids 40(1), 211–272 (1980).
[Crossref]

Gruen, D. M.

D. M. Gruen and R. L. McBeth, “The coordination chemistry of 3d transition metal ions in fused salt solutions,” Pure Appl. Chem. 6(1), 23–48 (1963).
[Crossref]

Guimbretiere, G.

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

Guth, N.

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Güttler, B.

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10) 2093 (1996).
[Crossref] [PubMed]

Halenius, U.

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Hanamura, E.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Harada, M.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

Hauf, C.

C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
[Crossref]

Heinrich, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Henderson, G. S.

G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
[Crossref]

Herman, P.

Hirano, M.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P.B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Horn, A.

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
[Crossref]

Hosono, H.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
[Crossref]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

Hutton, W.

W. Hutton and J. S. Thorp, “The vibrational spectra of MgO-Al2O3-SiO2 glasses containing TiO2,” J. Mater. Sci. 20(2), 542–551 (1985).
[Crossref]

Ichihashi, Y.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Iniewski, K.

J. W. M. Chon and K. Iniewski, Nanoplasmonics: Advanced Device Applications (CRC Press, 2013).

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

Jouini, A.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Juodkazis, S.

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Kahn, A. H.

J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895 (1953).
[Crossref]

Kajihara, K.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
[Crossref]

Kamitsos, E. I.

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

Kamitsos, E.I.

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
[Crossref]

Kato, K.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Kavokin, A. V.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

Kawasaki, S.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Kazansky, P.G.

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Kern, P.

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

Kimoto, K.

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Kittel, T.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

Kley, E.B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

Kniep, R.

C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
[Crossref]

Kordas, G.

E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
[Crossref]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Kristiansson, P.

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non Cryst. Solids,  354(2), 416–424 (2008).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Kumar, M.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Langford, S. C.

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Lim, G. C.

H. Zheng and G. C. Lim, “Laser-effected darkening in TPEs with TiO2 additives,” Opt. Las. Eng. 41(5), 791–800 (2004).
[Crossref]

Liu, X.

G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
[Crossref]

Lonzaga, J. B.

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Louis, C.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Marquestaut, N.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Matsuo, S.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Matsyuk, S. S.

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

McBeth, R. L.

D. M. Gruen and R. L. McBeth, “The coordination chemistry of 3d transition metal ions in fused salt solutions,” Pure Appl. Chem. 6(1), 23–48 (1963).
[Crossref]

Michler, J.

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

Miese, C.

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Miyamoto, I.

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
[Crossref]

Möncke, D.

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

Morenza, J. L.

A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
[Crossref]

Mounaix, P.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Müller, Y.

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports,  441(2) 47–189 (2007).
[Crossref]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nishii, J.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nissenson, B.

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

Nolte, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,”J. Phys. B: At. Mol. Opt. Phys. 43(16), 163001 (2010).
[Crossref]

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Ohashi, H.

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

Ohwada, M.

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Palles, D.

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

Patscheider, J.

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

Patsis, A.P.

E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
[Crossref]

Peng, M.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Petit, Y.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Pfaff, G.

C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
[Crossref]

Plech, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

Polshin, E. V.

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

Poulin, J. C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,”. Opt. Mater. Express 10(4), 711–723 (2011).
[Crossref]

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Rayner, D. M.

Régnier, E.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
[Crossref]

Richter, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

Rodriguez, V.

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

Royon, A.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sasaki, T.

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Sato, H.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Sato, Y.

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
[Crossref]

Schmidt, M.

Serra, P.

A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
[Crossref]

Shah, L.

Shima, T.

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P.B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Singh, S. P.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Skogby, H.

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

Skuja, L.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10) 2093 (1996).
[Crossref] [PubMed]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

Stewart, G.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Suenaga, K.

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Sugimoto, N.

Sun, H.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Suzuki, S.

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

Suzuki, Y.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Szameit, A.

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,”J. Phys. B: At. Mol. Opt. Phys. 43(16), 163001 (2010).
[Crossref]

Takahashi, T.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Takeuchi, M.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Taran, M. N.

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

Taylor, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

Tessman, J. R.

J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895 (1953).
[Crossref]

Thorp, J. S.

W. Hutton and J. S. Thorp, “The vibrational spectra of MgO-Al2O3-SiO2 glasses containing TiO2,” J. Mater. Sci. 20(2), 542–551 (1985).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Tünnermann, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

Uniyal, A.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Watanabe, M.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

Wen-Chen, Z.

M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
[Crossref]

Weyl, W. A.

W. A. Weyl, Coloured Glasses (Society of Glass Technology, 1954).

White, W.B.

T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
[Crossref]

Will, M.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

Winterstein-Beckmann, A.

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

Withford, M. J.

Wolf, M.

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

Wondraczek, L.

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
[Crossref]

Xiao-Xuan, W.

M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
[Crossref]

Yaacov, I.

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

Yamashita, H.

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

Yang, M.

M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
[Crossref]

Yoshikawa, A.

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

Yoshino, F.

Zhang, H.

Zhang, J.

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

Zheng, H.

H. Zheng and G. C. Lim, “Laser-effected darkening in TPEs with TiO2 additives,” Opt. Las. Eng. 41(5), 791–800 (2004).
[Crossref]

Zimmermann, F.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Adv. Func. Mater. (1)

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-Dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipula tion of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Am. Mineral. (1)

H. Skogby, U. Halenius, P. Kristiansson, and H. Ohashi, “Titanium incorporation and VI Ti3+-IV Ti4+ charge transfer in synthetic diopside,” Am. Mineral. 91(11–12), 1794–1801 (2006).
[Crossref]

Appl. Phys. A - Mater (4)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laserinduced nanogratings,” Appl. Phys. A - Mater.  100(1), 1–6 (2010).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A - Mater.  104(2), 503–507 (2011).
[Crossref]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A - Mater.  76(3), 351–354 (2003).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A - Mater.  103(2), 257–261 (2011).
[Crossref]

Appl. Phys. A - Mater. (2)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A - Mater. 76(3), 367–372 (2003).
[Crossref]

S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, and S. Nolte, “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys. A - Mater. 110(1), 9–15 (2013).
[Crossref]

Appl. Phys. Lett. (6)

G. Guimbretiere, M. Dussauze, V. Rodriguez, and E.I. Kamitsos, “Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass,” Appl. Phys. Lett.,  97, 171103 (2010).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Bull. Mater. Sci. (1)

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Chem. Lett. (1)

M. Anpo, T. Shima, T. Fujii, and S. Suzuki, “ESR studies of active surface titanium ions on anchored Ti-oxide catalysts,” Chem. Lett. 16 (10), 1997–2000 (2008).

J. Am. Ceram. Soc. (1)

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92, 542–544 (2009).
[Crossref]

J. Appl. Phys. (1)

J. B. Lonzaga, S.M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

J. Chem Phys. (1)

T. Furukawa, K.E. Fox, and W.B. White, “Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses,” J. Chem Phys. 75(7), 3226–3237 (1981).
[Crossref]

J. Cryst. Growth (1)

A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, and E. Hanamura, “Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel,” J. Cryst. Growth 287(2), 313–317 (2006).
[Crossref]

J. J. Appl. Phys. (1)

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” J. J. Appl. Phys. 37(12B), L1527 (1998).
[Crossref]

J. Laser Micro/Nanoeng (1)

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng.  2(1), 7–14 (2007).
[Crossref]

J. Mater. Sci. (2)

C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” J. Mater. Sci. 34(6), 1287–1292 (1999).
[Crossref]

W. Hutton and J. S. Thorp, “The vibrational spectra of MgO-Al2O3-SiO2 glasses containing TiO2,” J. Mater. Sci. 20(2), 542–551 (1985).
[Crossref]

J. Non Cryst. Solids (1)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non Cryst. Solids,  354(2), 416–424 (2008).
[Crossref]

J. Non-Cryst. Solids (8)

A. Winterstein-Beckmann, D. Möncke, D. Palles, E. I. Kamitsos, and L. Wondraczek, “Raman- spectroscopic study of indentation-induced structural changes in technical alkali- borosilicate glasses with varying silicate network connectivity,” J. Non-Cryst. Solids 405, 196–206 (2014).
[Crossref]

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity and transparency of silicate glasses,” J. Non-Cryst. Solids 355, 712–714 (2009).
[Crossref]

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3(1), 54–114 (1970).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

D. L. Griscom, “Defect structure of glasses: Some outstanding questions in regard to vitreous silica,” J. Non-Cryst. Solids 73(1), 51–77 (1985).
[Crossref]

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids 345, 332–337 (2004).
[Crossref]

D. Gerlich, M. Wolf, I. Yaacov, and B. Nissenson, “Thermoelastic properties of ULE titanium silicate glass,” J. Non-Cryst. Solids 21(2), 243–249 (1976).
[Crossref]

D. L. Griscom, “Electron spin resonance in glasses,” J. Non-Cryst. Solids 40(1), 211–272 (1980).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,”J. Phys. B: At. Mol. Opt. Phys. 43(16), 163001 (2010).
[Crossref]

J. Phys. Chem. B (2)

H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol,” J. Phys. Chem. B 102, (30)5870–5875 (1998).
[Crossref]

P. Kern, Y. Müller, J. Patscheider, and J. Michler, “Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films,” J. Phys. Chem. B 110(47), 23660–23668 (2006).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

M. Ohwada, K. Kimoto, K. Suenaga, Y. Sato, and T. Sasaki, “Synthesis and atomic characterization of a Ti2O3 nanosheet,” J. Phys. Chem. Lett. 2, 1820–1823 (2011).
[Crossref]

Laser Phot. Rev. (3)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Phot. Rev. 2(1–2), 26–46 (2008).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev. 6(6), 787–792 (2012).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Phot. Rev. 7(6), 953–962 (2013).
[Crossref]

Modern aspects of the vitreous state (1)

T. Bates, “Ligand field theory and absorption spectra of transition-metal ions in glasses,” Modern aspects of the vitreous state,  2, 195–254 (1962).

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2003).
[Crossref]

Nippon seramikkusu kyokai gakujutsu ronbunshi (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” Nippon seramikkusu kyokai gakujutsu ronbunshi 99(10), 923–994 (1991).
[Crossref]

Opt. Express (3)

Opt. Las. Eng. (1)

H. Zheng and G. C. Lim, “Laser-effected darkening in TPEs with TiO2 additives,” Opt. Las. Eng. 41(5), 791–800 (2004).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (4)

Phys. Chem. Miner. (2)

G. S. Henderson, X. Liu, and M. E. Fleet, “ A Ti L-edge X-ray absorption study of Ti-silicate glasses,” Phys. Chem. Miner. 29(1), 32–42 (2002).
[Crossref]

M. N. Taran, M. Andrut, E. V. Polshin, and S. S. Matsyuk, “Optical spectroscopy study of natural Fe, Ti-bearing calcic amphiboles,” Phys. Chem. Miner. 27(1), 59–69 (1999).
[Crossref]

Phys. Rev. (1)

J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895 (1953).
[Crossref]

Phys. Rev. B (2)

E.I. Kamitsos, A.P. Patsis, and G. Kordas, “Infrared reflectance spectra of heat-treated, sol-gel derived silica,” Phys. Rev. B,  48, 12499–12505 (1993).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Phys. Rev. Lett. (5)

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10) 2093 (1996).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

J. Zhang, M. Gecevicius, M. Beresna, and P.G. Kazansky, “Seemingly unlimited lifetime data storage in nano-structured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24, (2005).
[Crossref]

Physics Reports (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports,  441(2) 47–189 (2007).
[Crossref]

Prog. Inorg. Chem (1)

J. Ferguson, “Spectroscopy of 3d complexes,” Prog. Inorg. Chem.  12, 159 (1970).
[Crossref]

Prog. Mater. Sci. (1)

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.,  57(1), 63–94 (2012).
[Crossref]

Pure Appl. Chem. (1)

D. M. Gruen and R. L. McBeth, “The coordination chemistry of 3d transition metal ions in fused salt solutions,” Pure Appl. Chem. 6(1), 23–48 (1963).
[Crossref]

Radiat. Eff. Defects S. (1)

M. Yang, W. Xiao-Xuan, and Z. Wen-Chen, “EPR parameters and defect structure of the tetrahedral Ti3+ defect center in beryl crystal,” Radiat. Eff. Defects S. 163(1), 79–83 (2008).
[Crossref]

Solid State Comm. (1)

F. L. Galeener, “Planar rings in glasses,” Solid State Comm. 44(7), 1037–1040 (1982).
[Crossref]

Thin Solid Films (1)

A. P. del Pino, P. Serra, and J. L. Morenza, “Coloring of titanium by pulsed laser processing in air,” Thin Solid Films 415(1–2), 201–205 (2002).
[Crossref]

Other (4)

J. A. Duffy, Bonding, Energy Levels, and Bands in Inorganic Solids (Longman, 1990).

W. A. Weyl, Coloured Glasses (Society of Glass Technology, 1954).

J. W. M. Chon and K. Iniewski, Nanoplasmonics: Advanced Device Applications (CRC Press, 2013).

M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F. Brisset, S. Nolte, and B. Poumellec, “Porous nanogratings and related form birefringence in silicate and germanate glasses,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BW2D-2), Optical Society of America. (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Exemplary top views on different laser induced modifications in ULE. (b) Overview of the processing parameters (pulse energy and repetition rate) for the inscription of local modifications in ULE (for details see text).
Fig. 2
Fig. 2 Top view (SEM image) of laser induced nanogratings in ULE. After laser inscription the sample was polished and etched for 120s with HF acid.
Fig. 3
Fig. 3 (a) Period and diameter of laser induced nanogratings. (b) Retardance and Porod Invariant of nanogratings in ULE using different pulse energies with respect to the number of applied pulses.
Fig. 4
Fig. 4 (a) Exemplary SEM micrograph of the nanopores in ULE shown in the y–z plane. (b) 3D reconstruction of 81 SEM images of nanogratings (2000 pulses per spot at a pulse energy of 150 nJ) prepared by FIB milling.
Fig. 5
Fig. 5 Exemplary images of laser induced darkening in ULE, from left to right with decreasing pulse energies. Parallel lines (along y direction) were inscribed into the material at a repetition rate of 4.7 MHz and a spacing of 5 µm.
Fig. 6
Fig. 6 Microscopic (a) and SEM (b) top views of laser modified ULE. Continuous lines were inscribed using a pulse energy of 200 nJ. (b) To reveal the inner shape of the modification the sample was dissected using FIB.
Fig. 7
Fig. 7 (a) Absorption spectra of laser modified samples. (b) Difference in the absorption spectra between the processed ULE glass and the pristine material.
Fig. 8
Fig. 8 ESR signal of pristine and laser modified ULE.
Fig. 9
Fig. 9 (a) Raman spectra of modified and unmodified ULE. (b) Microscope image of laser modified ULE. (c) Integrated intensity of characteristic Raman peaks.
Fig. 10
Fig. 10 Photoreduction of Ti4+ to Ti3+ under the formation of molecular oxygen (photoxidation of oxide anions O(−ii) to O 2 0) and subsequent reordering of the vitreous network structure is reflected in an increase of Si-O-Si bonds, eventually forming Ti2O3 cluster and even more Si-O-Si bonds.
Fig. 11
Fig. 11 Sketch of the inner region of laser modified ULE. Processing with multiple laser pulses at high repetition rates leads to melting and subsequent resolidification of the material. In the upper part a cavity is formed, containing molecular oxygen and being surrounded by a shell of compacted glass.

Metrics