Abstract

Transparent conductive thin films are a key building block of modern optoelectronic devices. A promising alternative to expensive indium containing oxides is aluminum doped zinc oxide (AZO). By correlating spectroscopic ellipsometry and photoluminescence, we analyzed the contributions of different optical transitions in AZO grown by atomic layer deposition to a model dielectric function (MDF) over a wide range of photon energies. The derived MDF reflects the effects of the actual band structure and therefore describes the optical properties very accurately. The presented MDF is solely based on physically meaningful parameters in contrast to empirical models like e.g. the widely used Sellmeier equation, but nevertheless real and imaginary parts are expressed as closed-form expressions. We analyzed the influence of the position of the Fermi energy and the Fermi-edge singularity to the different parts of the MDF. This information is relevant for design and simulation of optoelectronic devices and can be determined by analyzing the results from spectroscopic ellipsometry.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanopatterning of atomic layer deposited Al:ZnO films using electron beam lithography for waveguide applications in the NIR region

Kevin Santiago, Rajeh Mundle, Chandan B. Samantaray, M. Bahoura, and A. K. Pradhan
Opt. Mater. Express 2(12) 1743-1750 (2012)

Engineering the structural, plasmonic, and optical properties of multilayered aluminum-doped zinc oxide metamaterial grown by pulsed laser deposition

Priscilla Kelly, Wenrui Zhang, Mingzhao Liu, and Lyuba Kuznetsova
Appl. Opt. 58(21) 5681-5686 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
    [Crossref]
  2. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
    [Crossref]
  3. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
    [Crossref]
  4. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
    [Crossref]
  5. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
    [Crossref]
  6. M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
    [Crossref]
  7. J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
    [Crossref]
  8. H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
    [Crossref]
  9. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [Crossref] [PubMed]
  10. G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
    [Crossref]
  11. S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
    [Crossref] [PubMed]
  12. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
    [Crossref] [PubMed]
  13. G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
    [Crossref] [PubMed]
  14. P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
    [Crossref]
  15. T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
    [Crossref]
  16. J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
    [Crossref]
  17. R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).
  18. Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
    [Crossref]
  19. D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
    [Crossref]
  20. Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
    [Crossref]
  21. W. von Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. der Phys. und Chemie 143, 272–282 (1871).
    [Crossref]
  22. H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
    [Crossref]
  23. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
    [Crossref]
  24. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 306, 566–613 (1900).
    [Crossref]
  25. K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
    [Crossref]
  26. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. B 67, 775–782 (1954).
    [Crossref]
  27. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
    [Crossref]
  28. S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
    [Crossref]
  29. L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev. 26, 220–224 (1958).
  30. E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
    [Crossref] [PubMed]
  31. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–679 (1935).
    [Crossref]
  32. M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
    [Crossref]
  33. S. Adachi, Optical properties of crystalline and amorphous semiconductors (Springer, New York, 1999), 1st ed.
  34. B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
    [Crossref]
  35. D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
    [Crossref]
  36. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
    [Crossref]
  37. T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
    [Crossref]
  38. G. D. Mahan, “Excitons in degenerate semiconductors,” Phys. Rev. 153, 882–889 (1967).
    [Crossref]
  39. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
    [Crossref]
  40. A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
    [Crossref] [PubMed]

2015 (2)

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

2014 (1)

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

2013 (4)

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref] [PubMed]

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

2012 (3)

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

2011 (4)

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

2010 (2)

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

2007 (1)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

2005 (1)

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

2003 (2)

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
[Crossref]

2002 (2)

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

1997 (1)

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

1996 (1)

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

1995 (1)

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

1990 (1)

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

1989 (1)

T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
[Crossref]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

1981 (1)

K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[Crossref]

1974 (2)

M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
[Crossref]

J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
[Crossref]

1967 (1)

G. D. Mahan, “Excitons in degenerate semiconductors,” Phys. Rev. 153, 882–889 (1967).
[Crossref]

1958 (1)

L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev. 26, 220–224 (1958).

1954 (2)

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. B 67, 775–782 (1954).
[Crossref]

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–679 (1935).
[Crossref]

1900 (1)

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

1871 (1)

W. von Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. der Phys. und Chemie 143, 272–282 (1871).
[Crossref]

Adachi, S.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

S. Adachi, Optical properties of crystalline and amorphous semiconductors (Springer, New York, 1999), 1st ed.

Amkreutz, D.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Arnaudov, B. G.

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Bae, K.-R.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Bahoura, M.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Banerjee, P.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Barquinha, P.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Bashouti, M.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Bechstedt, F.

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Berggren, K. F.

K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[Crossref]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Brönstrup, G.

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–679 (1935).
[Crossref]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[Crossref]

Chang, C. S.

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

Chia, C. H.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Choi, H.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

Chrisey, D.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

Christian, R.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Christiansen, S.

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Christiansen, S. H.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Chuang, S. L.

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

Csáki, A.

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Dasari, K.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

De Martino, A.

Dhakal, T.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Dieker, C.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Domanevskii, D. S.

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Drude, P.

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

Elam, J. W.

J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
[Crossref]

Embrechts, H.

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

Evtimova, S. K.

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Fortunato, E.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Fritzsche, W.

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Fuchs, F.

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Fung, M. K.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

Gamez, G.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Garcia-Caurel, E.

Gardev, P. L.

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

Garwe, F.

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Gaston, J.-P.

George, S. M.

J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
[Crossref]

Göbelt, M.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Gonçalves, A.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Green, M.

M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
[Crossref]

J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
[Crossref]

Hannewald, K.

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Hermkens, P. M.

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Hoffmann, B.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Hofmann, T.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Horwitz, J.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

Hüpkes, J.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Ishida, T.

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

Isusov, A. M.

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Jäckle, S.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Jiang, X.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

Kafafi, Z.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

Kawasaki, M.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Keding, R.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Kessels, W. M. M.

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Kim, H.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

Kim, H.-M.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

Kim, K.-B.

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

Kim, S.-H.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

Kim, W.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

King, F.

J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
[Crossref]

M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
[Crossref]

Knoops, H. C. M.

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Kobayashi, H.

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

Koinuma, H.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Kwon, J.-Y.

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

Latzel, M.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Lee, D.-J.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

Lee, S. B.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Lee, S. T.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

Lee, W.-J.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Leja, E.

T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Mahan, G. D.

G. D. Mahan, “Excitons in degenerate semiconductors,” Phys. Rev. 153, 882–889 (1967).
[Crossref]

Mäkinen, A.

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

Makino, T.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Marques, A.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Martins, R.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Michler, J.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Mori, H.

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

Moss, T. S.

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. B 67, 775–782 (1954).
[Crossref]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

Mundle, R. M.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Nakato, Y.

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

Nandur, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Ohtomo, A.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Palai, R.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Pereira, L.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Pimentel, A.

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

Pisarkiewicz, T.

T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
[Crossref]

Potts, S. E.

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Pradhan, A. K.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Radmilovic, V. R.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Radmilovic, V. V.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Rech, B.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

Rödl, C.

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Roozeboom, F.

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Routkevitch, D.

J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
[Crossref]

Rubloff, G. W.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Santiago, K.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Schechtel, F.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Schleife, A.

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Schmitt, S. W.

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Segawa, Y.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Sernelius, B. E.

K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[Crossref]

Shalev, G.

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

Sharma, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Shaw, D.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Shewchun, J.

M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
[Crossref]

J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
[Crossref]

Sivakov, V.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Spiecker, E.

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

Srivastava, S. K.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

Steinbrück, A.

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Stiebig, H.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Tamura, K.

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

Terry, H. S.

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

van de Loo, B. W. H.

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

van der Pauw, L. J.

L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev. 26, 220–224 (1958).

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

Vanhart, D.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Venzago, C.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Verheijen, M. a.

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

von Sellmeier, W.

W. von Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. der Phys. und Chemie 143, 272–282 (1871).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Westgate, C. R.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

Wong, F. L.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

Wu, Y.

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

Yan, L.

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

Yoshikawa, H.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Zakrzewska, K.

T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
[Crossref]

Adv. Funct. Mater. (1)

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21, 448–455 (2011).
[Crossref]

Ann. der Phys. und Chemie (1)

W. von Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. der Phys. und Chemie 143, 272–282 (1871).
[Crossref]

Ann. Phys. (2)

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–679 (1935).
[Crossref]

Appl. Phys. Lett. (1)

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83, 1875–1877 (2003).
[Crossref]

Appl. Spectrosc. (1)

Chem. Mater. (1)

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. M. Knoops, F. Roozeboom, and W. M. M. Kessels, “Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor,” Chem. Mater. 25, 4619–4622 (2013).
[Crossref]

J. Appl. Phys. (4)

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[Crossref]

H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method,” J. Appl. Phys. 77, 1301–1307 (1995).
[Crossref]

Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. a. Verheijen, F. Roozeboom, and W. M. M. Kessels, “Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition,” J. Appl. Phys. 114, 024308 (2013).
[Crossref]

J. Electrochem. Soc. (2)

D.-J. Lee, J.-Y. Kwon, S.-H. Kim, H.-M. Kim, and K.-B. Kim, “Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films,” J. Electrochem. Soc. 158, D277–D281 (2011).
[Crossref]

J. W. Elam, D. Routkevitch, and S. M. George, “Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques,” J. Electrochem. Soc. 150, G339–G346 (2003).
[Crossref]

J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. (1)

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. & Technol. A Vacuum, Surfaces, Film. 30, 021202 (2012).
[Crossref]

J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (1)

R. M. Mundle, H. S. Terry, K. Santiago, D. Shaw, M. Bahoura, A. K. Pradhan, K. Dasari, and R. Palai, “Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 01A146 (2013).

Jpn. J. Appl. Phys. (1)

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

Nano Energy (1)

M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jäckle, M. Latzel, V. V. Radmilović, V. R. Radmilović, E. Spiecker, and S. Christiansen, “Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes,” Nano Energy 16, 196–206 (2015).
[Crossref]

Nano Lett. (3)

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: A promising material for research and applications in nanotechnology,” Nano Lett. 12, 4050–4054 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

Philips Tech. Rev. (1)

L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev. 26, 220–224 (1958).

Phys. Rev. (2)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[Crossref]

G. D. Mahan, “Excitons in degenerate semiconductors,” Phys. Rev. 153, 882–889 (1967).
[Crossref]

Phys. Rev. B (5)

T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Optical properties of ZnO:Al epilayers: Observation of room-temperature many-body absorption-edge singularity,” Phys. Rev. B 65, 121201 (2002).
[Crossref]

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[Crossref]

G. Brönstrup, F. Garwe, A. Csáki, W. Fritzsche, A. Steinbrück, and S. Christiansen, “Statistical model on the optical properties of silicon nanowire mats,” Phys. Rev. B 84, 125432 (2011).
[Crossref]

Phys. Rev. Lett. (1)

A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[Crossref] [PubMed]

Proc. Phys. Soc. B (1)

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. B 67, 775–782 (1954).
[Crossref]

Prog. Photovoltaics Res. Appl. (1)

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovoltaics Res. Appl. 22, 371–382 (2014).
[Crossref]

Sci. Rep. (1)

G. Shalev, S. W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis,” Sci. Rep. 5, 8570 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

B. G. Arnaudov, D. S. Domanevskii, A. M. Isusov, P. L. Gardev, and S. K. Evtimova, “Free electron recombination in degenerately doped and moderately compensated gallium arsenide,” Semicond. Sci. Technol. 5, 620–623 (1990).
[Crossref]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[Crossref]

Solid. State. Electron. (2)

M. Green, F. King, and J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid. State. Electron. 17, 551–561 (1974).
[Crossref]

J. Shewchun, M. Green, and F. King, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment,” Solid. State. Electron. 17, 563–572 (1974).
[Crossref]

Thin Solid Films (3)

H. Kim, J. Horwitz, W. Kim, A. Mäkinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films 420–421, 539–543 (2002).
[Crossref]

E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films 487, 205–211 (2005).
[Crossref]

T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band,” Thin Solid Films 174, 217–223 (1989).
[Crossref]

Other (1)

S. Adachi, Optical properties of crystalline and amorphous semiconductors (Springer, New York, 1999), 1st ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic drawing of the layer stack used for modeling the ellipsometry data.
Fig. 2
Fig. 2 Scanning electron micrograph of the surface of AZO with 0.27at.% Al.
Fig. 3
Fig. 3 Charge carrier density, Hall mobility and resistivity of the AZO films determined by Hall measurements. The charge carrier density increases with increasing Al concentration, while the mobility decreases due to increased impurity scattering.
Fig. 4
Fig. 4 Ellipsometry data and result of the model fit. Left: Is. Right: Ic. The band-edge features at about 3.3eV are excellently reproduced by the model. The spectra are vertically shifted by 1 for clarity.
Fig. 5
Fig. 5 (a) Real part of the dielectric function of the AZO layers obtained from the MDF. The spectra are vertically shifted by 1 for clarity. (b) Imaginary part of the dielectric function of the AZO layers. The contributions of the three different parts of the model are plotted in red (Adachi), blue (Forouhi) and green (Drude). With increasing Al concentration there is a blue-shift of the band-edge due to band-filling and also the Fermi-edge singularity degenerates. Due to the higher concentration of free charge carriers at high doping, the plasma frequency increases, resulting in higher absorption in the infrared. The spectra are vertically shifted by 2.
Fig. 6
Fig. 6 PL spectra of AZO layers fitted using Eq. (15) and ε2 from the MDF. The PL signal becomes very weak at high doping, suggesting the existence of many channels of non-radiative recombination, leading to heating of the sample. This can result in deviations between the results of SE and PL.
Fig. 7
Fig. 7 (a) Comparison between the transition energy obtained from the Adachi model and the Fermi energy obtained from PL. The results from both methods are in very good agreement. The diagonal line is a guide to the eye, showing the ideal accordance. The shaded area indicates thermal energy at room temperature. (b) Energy where kForouhi is maximum.

Tables (1)

Tables Icon

Table 1 Result of least squares fit of the MDF to the SE data.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I s = sin ( 2 Ψ ) sin ( Δ ) and I c = sin ( 2 Ψ ) cos ( Δ ) .
ε ( E ) = ε Adachi + ε Forouhi + ε Drude = ε 1 + i ε 2 ,
Im ( ε Adachi ) ( E ) = 4 e 2 2 π μ 2 E 2 | P CV | 2 J CV ( E ) ,
J CV ( E ) = S d S | k ( E C E V ) | E C E V = E .
ε Adachi ( E ) = A E 1 3 2 f ( χ ) ,
f ( χ ) = 2 1 + χ 1 χ χ 2 ,
χ = E + i Γ 1 E 1 ,
n Forouhi ( E ) = n + B ( E E 2 ) + C ( E E 2 ) 2 + Γ 2 2 ,
k Forouhi ( E ) = { f ( E E 0 ) 2 ( E E 2 ) 2 + Γ 2 2 for E > E 0 0 for E E 0 ,
B = f Γ 2 ( Γ 2 2 ( E 2 E 0 ) 2 ) ,
C = 2 f Γ 2 ( E 2 E 0 ) ,
E max = E 2 + Γ 2 2 E 2 E 0 .
ε Drude ( E ) = E p 2 E 2 + i Γ D E ,
I PL ( E ) J ( E ) 1 e E E F k B T + 1 ,
I PL ( E ) = D ε 2 ( E ) E 2 1 e E E F k B T + 1 ,

Metrics