Abstract

Concentrations of metal ions from a substrate were found in coatings adjacent to the substrate by studying the coatings using X-ray photoelectron spectroscopy before and after annealing. Small metal ions easily diffused into the coating from the substrate, whereas larger metal ions had more difficulty doing so because of their large atomic radii. A higher annealing temperature and a lower packing density induced a faster diffusion rate and a higher concentration of metal ions in the coating. Smaller metal ions passed through a SiO2 layer and preferentially accumulated in the Ta2O5 layer due to the migration of oxygen vacancies. These results are relevant for selecting the coating temperature, annealing temperature, and the substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront control of SiO2-based ultraviolet narrow-bandpass filters prepared by plasma ion-assisted deposition

Jue Wang, Robert L. Maier, and Horst Schreiber
Appl. Opt. 46(2) 175-179 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Smith and D. J. Srolovitz, “Void formation during film growth: A molecular dynamics simulation study,” J. Appl. Phys. 79(3), 1448–1457 (1996).
    [Crossref]
  2. W. W. Liu, C. Y. Wei, K. Yi, and J. D. Shao, “Post processing treatments to improve laser damage resistance of fused silica optical surface and SiO2 coatings,” Chin. Opt. Lett. 13(4), 041407 (2015).
    [Crossref]
  3. Y. Cui, H. Li, K. Yi, and J. D. Shao, “Moisture absorption characteristics of a SiO2 film at 2 to 3μm,” Chin. Opt. Lett. 13(2), 023101 (2015).
    [Crossref]
  4. S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
    [Crossref]
  5. M. S. Meikhail, “Diffusion of sodium ions in borosilicate glasses by molecular dynamics method,” Z. Phys. B Condens. Matter 84(2), 309–313 (1991).
    [Crossref]
  6. Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).
  7. B. Zhang and C. Y. Wang, “Alkali ions diffusion in ZrF4-BaF2-LaF3-AlF-NaF glass,” Journal of Shanghai Institute of Building Materials 5(4), 322–326 (1992).
  8. P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
    [Crossref]
  9. Y. J. Du and Y. X. Zhou,“Na+ self diffusion in Li2O-Na2O-Al2O3-SiO2 system glasses,” Journal of East China Institute of Chemical Technology 15(6), 750–755 (1989).
  10. H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).
  11. W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
    [Crossref]
  12. R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
    [Crossref]
  13. N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
    [Crossref]
  14. Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
    [Crossref]
  15. L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
    [Crossref]
  16. O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
    [Crossref]
  17. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [Crossref]

2015 (2)

2014 (1)

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

2013 (2)

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

2011 (1)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

2007 (1)

N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
[Crossref]

2004 (2)

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

2003 (1)

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

2001 (1)

Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).

1999 (1)

H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).

1996 (1)

R. W. Smith and D. J. Srolovitz, “Void formation during film growth: A molecular dynamics simulation study,” J. Appl. Phys. 79(3), 1448–1457 (1996).
[Crossref]

1992 (1)

B. Zhang and C. Y. Wang, “Alkali ions diffusion in ZrF4-BaF2-LaF3-AlF-NaF glass,” Journal of Shanghai Institute of Building Materials 5(4), 322–326 (1992).

1991 (1)

M. S. Meikhail, “Diffusion of sodium ions in borosilicate glasses by molecular dynamics method,” Z. Phys. B Condens. Matter 84(2), 309–313 (1991).
[Crossref]

1989 (1)

Y. J. Du and Y. X. Zhou,“Na+ self diffusion in Li2O-Na2O-Al2O3-SiO2 system glasses,” Journal of East China Institute of Chemical Technology 15(6), 750–755 (1989).

1985 (1)

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

Antônio, J. R.

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Böhme, M.

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Broqvist, P.

N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
[Crossref]

Capron, N.

N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
[Crossref]

Cui, Y.

Y. Cui, H. Li, K. Yi, and J. D. Shao, “Moisture absorption characteristics of a SiO2 film at 2 to 3μm,” Chin. Opt. Lett. 13(2), 023101 (2015).
[Crossref]

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

Cunningham, G. C.

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

Du, Y. J.

Y. J. Du and Y. X. Zhou,“Na+ self diffusion in Li2O-Na2O-Al2O3-SiO2 system glasses,” Journal of East China Institute of Chemical Technology 15(6), 750–755 (1989).

Fan, Z. X.

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Fazzio, A.

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

Guo, X. T.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Henderson, P.

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

Hu, G. H.

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

Huang, J. B.

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Jiang, L. B.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Kaiser, N.

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Kui, Y.

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Li, H.

Li, L.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Li, X. Y.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Liu, W. W.

Lowry, R. K.

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

Luo, W. W.

H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).

Meikhail, M. S.

M. S. Meikhail, “Diffusion of sodium ions in borosilicate glasses by molecular dynamics method,” Z. Phys. B Condens. Matter 84(2), 309–313 (1991).
[Crossref]

Nolan, J.

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Orellana, W.

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Pasquarello, A.

N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
[Crossref]

Ramprasad, R.

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Raymondb, M.

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Remmela, T.

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Roberts, D.

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Sadd, M.

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Schlegel, R.

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Scopel, W. L.

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

Shao, J. D.

Y. Cui, H. Li, K. Yi, and J. D. Shao, “Moisture absorption characteristics of a SiO2 film at 2 to 3μm,” Chin. Opt. Lett. 13(2), 023101 (2015).
[Crossref]

W. W. Liu, C. Y. Wei, K. Yi, and J. D. Shao, “Post processing treatments to improve laser damage resistance of fused silica optical surface and SiO2 coatings,” Chin. Opt. Lett. 13(4), 041407 (2015).
[Crossref]

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Shao, S. Y.

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Silva, W. D.

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

Smith, R. W.

R. W. Smith and D. J. Srolovitz, “Void formation during film growth: A molecular dynamics simulation study,” J. Appl. Phys. 79(3), 1448–1457 (1996).
[Crossref]

Srolovitz, D. J.

R. W. Smith and D. J. Srolovitz, “Void formation during film growth: A molecular dynamics simulation study,” J. Appl. Phys. 79(3), 1448–1457 (1996).
[Crossref]

Stenzel, O.

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Tian, D.

Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).

Tian, Q. B.

Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).

Wang, C. Y.

B. Zhang and C. Y. Wang, “Alkali ions diffusion in ZrF4-BaF2-LaF3-AlF-NaF glass,” Journal of Shanghai Institute of Building Materials 5(4), 322–326 (1992).

Wang, X. H.

Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).

Wei, C. Y.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Yan, Y.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Yi, K.

Zhang, B.

B. Zhang and C. Y. Wang, “Alkali ions diffusion in ZrF4-BaF2-LaF3-AlF-NaF glass,” Journal of Shanghai Institute of Building Materials 5(4), 322–326 (1992).

Zhang, D. P.

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Zhang, G. L.

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

Zhao, H. F.

H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).

Zhou, A.

H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).

Zhou, Y. X.

Y. J. Du and Y. X. Zhou,“Na+ self diffusion in Li2O-Na2O-Al2O3-SiO2 system glasses,” Journal of East China Institute of Chemical Technology 15(6), 750–755 (1989).

Appl. Phys. Lett. (2)

W. L. Scopel, J. R. Antônio, W. D. Silva, W. Orellana, and A. Fazzio,“Comparative study of defect energetics in HfO2 and SiO2,” Appl. Phys. Lett. 84, 1492–1494 (2004).
[Crossref]

N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett. 91(19), 192905 (2007).
[Crossref]

Appl. Surf. Sci. (2)

Y. Cui, G. H. Hu, Y. Kui, and J. D. Shao, “Interface characteristics of peeling-off damages of laser coatings,” Appl. Surf. Sci. 290, 71–79 (2014).
[Crossref]

L. B. Jiang, X. T. Guo, X. Y. Li, L. Li, G. L. Zhang, and Y. Yan, “Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass,” Appl. Surf. Sci. 265, 889–894 (2013).
[Crossref]

B Chin. Ceram. Soc. (1)

H. F. Zhao, A. Zhou, and W. W. Luo, “The study of Na+ diffusion in the preparation of ATO films on glass substrate by Sol-Gel method,” B Chin. Ceram. Soc. 3, 40–42 (1999).

Chin. Opt. Lett. (2)

Contrib. Mineral. Petrol. (1)

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, “Structural controls and mechanisms of diffusion in natural silicate melts,” Contrib. Mineral. Petrol. 89(2-3), 263–272 (1985).
[Crossref]

J. Appl. Phys. (2)

R. W. Smith and D. J. Srolovitz, “Void formation during film growth: A molecular dynamics simulation study,” J. Appl. Phys. 79(3), 1448–1457 (1996).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Journal of East China Institute of Chemical Technology (1)

Y. J. Du and Y. X. Zhou,“Na+ self diffusion in Li2O-Na2O-Al2O3-SiO2 system glasses,” Journal of East China Institute of Chemical Technology 15(6), 750–755 (1989).

Journal of Shanghai Institute of Building Materials (1)

B. Zhang and C. Y. Wang, “Alkali ions diffusion in ZrF4-BaF2-LaF3-AlF-NaF glass,” Journal of Shanghai Institute of Building Materials 5(4), 322–326 (1992).

Mater. Sci. Technol. (1)

Q. B. Tian, X. H. Wang, and D. Tian, “Influence of annealing processes on phase-separation and crystallization in glass ceramics system SiO2-Al2O3-MgO-F,” Mater. Sci. Technol. 9(4), 402–405 (2001).

Microelectron. Eng. (1)

R. Ramprasad, M. Sadd, D. Roberts, T. Remmela, and M. Raymondb, “Oxygen vacancy defects in tantalum pentoxide: a density functional study,” Microelectron. Eng. 69(2-4), 190–194 (2003).
[Crossref]

Proc. SPIE (1)

S. Y. Shao, J. D. Shao, D. P. Zhang, J. B. Huang, and Z. X. Fan, “Influences of post-deposition annealing on the properties of the ZrO2 thin films prepared by electron beam evaporation,” Proc. SPIE 5774, 307–311 (2004).
[Crossref]

Thin Solid Films (1)

O. Stenzel, S. Wilbrandt, R. Schlegel, M. Böhme, and N. Kaiser, “Preparation and properties of high refractive index tantalum pentoxide coatings deposited by plasma ion assisted deposition with xenon or argon assistance,” Thin Solid Films 542, 295–299 (2013).
[Crossref]

Z. Phys. B Condens. Matter (1)

M. S. Meikhail, “Diffusion of sodium ions in borosilicate glasses by molecular dynamics method,” Z. Phys. B Condens. Matter 84(2), 309–313 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Percentage of atoms in the fracture surface and the polished surface of the two types of substrates at room temperature: a) Si, b) O, c) Na, d) K and e) Ba.
Fig. 2
Fig. 2 Atomic percentages in Ta2O5 coating before and after annealing: a) Ta, b) Si, c) O, d) Na, e) K and f) Ba. The black line, blue line and purple line represent the sample on the K9 substrate. The red line, green line and brown green line represents the sample on the JGS1 substrate.
Fig. 3
Fig. 3 Changes in the elemental contents of the Ta2O5/SiO2/Ta2O5@K9 stack before and after annealing: a) Ta, b) Si, c) O, d) Na, e) K and f) Ba.
Fig. 4
Fig. 4 Changes in the elemental contents of the SiO2/Ta2O5/SiO2@K9 stack before and after annealing: a) Ta, b) Si, c) O, d) Na, e) K and f) Ba.
Fig. 5
Fig. 5 Thickness of the SiO2/Ta2O5/SiO2@K9 stack: a) before annealing b) after 24 h annealing at 500 °C.
Fig. 6
Fig. 6 Atomic contents of metal ions in HfO2@K9 coatings before and after annealing: a) Na, b) K and c) Ba.
Fig. 7
Fig. 7 Atomic contents of metal ions in SiO2@K9 coatings before and after annealing: a) Na, b) K and c) Ba.
Fig. 8
Fig. 8 Atomic contents of metal ions in Ta2O5@K9 coatings before and after annealing: a) Na, b) K and c) Ba.
Fig. 9
Fig. 9 Crystalline phases of HfO2 coatings: a) prepared by EBE and b) prepared by IBS.

Tables (1)

Tables Icon

Table 1 Details of the coatings prepared by three different coating techniques

Metrics