Abstract

The luminescence spectra in β-Ga2O3 (4N) and β-Ga2O3:Si single crystals excited with the band-edge energy consist of UV/blue and blue/green broad bands. The luminescence with decay times (>1 s) is called persistent phosphorescence (PP). The PP spectra observed in both β-Ga2O3 single crystals at 15 K are in agreement with the blue/green band. The PP intensities decrease gradually by increasing the temperature from 15 K and disappear above ~150 K. The decay curves of the luminescence in wide time range between 4 and 100 μs and between 1 and 103 s at 15 K fit a power function of t-n with n~1.1 and 0.9, respectively. The decay occurs through the same mechanism as the recombination of donors and acceptors in semiconductors. Thermal excitation of shallowly trapped electrons in β-Ga2O3 into the conduction band leads to the decrease of the PP intensity and the increase of the electrical conductivity and the photocurrent.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent phosphorescence in Ce-doped Lu2SiO5

Mitsuo Yamaga, Yusuke Ohsumi, Tomomi Nakayama, and Thomas P. J. Han
Opt. Mater. Express 2(4) 413-419 (2012)

Enhanced persistent luminescence and photocatalytic properties of Ga2O3:Cr3+ by In3+ doping

Lei Li, Ke Xu, Yinhai Wang, Zhengfa Hu, and Hui Zhao
Opt. Mater. Express 6(4) 1122-1130 (2016)

Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor

Wuzhao Yan, Feng Liu, Yi-Ying Lu, Xiao-Jun Wang, Min Yin, and Zhengwei Pan
Opt. Express 18(19) 20215-20221 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lewis and D. C. Paine, “Application and processing of transparent conducting oxides,” MRS Bull. 25(08), 22–27 (2000).
    [Crossref]
  2. E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
    [Crossref]
  3. M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
    [Crossref]
  4. L. Binet and D. Gourier, “Origin of the blue luminescence ofβ,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
    [Crossref]
  5. M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).
  6. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, 1999), Chap. 7.
  7. S. W. S. Mckeever, Thermoluminescence of Solids (Cambridge University Press, 1985), pp143–148.
  8. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
    [Crossref]
  9. E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
    [Crossref]
  10. E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
    [Crossref]
  11. K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
    [Crossref]
  12. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 1996) p. 274.
  13. M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
    [Crossref]
  14. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 1970) pp 60–74.
  15. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, 1993), Chaps. 2 and 7.
  16. M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
    [Crossref]
  17. M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
    [Crossref]

2011 (2)

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

2008 (3)

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

2003 (1)

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

2002 (3)

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

2000 (2)

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
[Crossref]

B. G. Lewis and D. C. Paine, “Application and processing of transparent conducting oxides,” MRS Bull. 25(08), 22–27 (2000).
[Crossref]

1998 (1)

L. Binet and D. Gourier, “Origin of the blue luminescence ofβ,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Aoki, K.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

Binet, L.

L. Binet and D. Gourier, “Origin of the blue luminescence ofβ,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Fukuda, T.

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Gourier, D.

L. Binet and D. Gourier, “Origin of the blue luminescence ofβ,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Hasegawa, T.

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

Hayashi, T.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
[Crossref]

Hiramatsu, H.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Hirano, M.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Honda, M.

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Hosono, H.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Ichinose, N.

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

Inoue, T.

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Ishikawa, T.

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

Iwanaga, M.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
[Crossref]

Kitoh, Y.

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

Kodama, N.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Lewis, B. G.

B. G. Lewis and D. C. Paine, “Application and processing of transparent conducting oxides,” MRS Bull. 25(08), 22–27 (2000).
[Crossref]

Masui, Y.

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Ohsumi, Y.

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

Ohta, H.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Orita, M.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Paine, D. C.

B. G. Lewis and D. C. Paine, “Application and processing of transparent conducting oxides,” MRS Bull. 25(08), 22–27 (2000).
[Crossref]

Shimamura, K.

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

Sugawara, T.

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Takahashi, T.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Tanii, Y.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Ujiie, T.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

Villora, E. G.

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Víllora, E. G.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

Watanabe, M.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
[Crossref]

Yabasi, S.

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

Yamaga, M.

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Yoshida, M.

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

Yoshikawa, Y.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

Appl. Phys. Lett. (3)

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control inβ, ” Appl. Phys. Lett. 92(20), 202210 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion ofβ, ” Appl. Phys. Lett. 92(20), 202118 (2008).
[Crossref]

K. Shimamura, E. G. Víllora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-dopedβ, ” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

J. Ceram. Process. Res. (1)

M. Yamaga, Y. Kitoh, Y. Ohsumi, E. G. Villora, and K. Shimamura, “Long-lasting phosphorescence in β-Ga2O3 transparent conductive oxide,” J. Ceram. Process. Res. 12(S1), s26–s29 (2011).

J. Phys. Chem. Solids (1)

L. Binet and D. Gourier, “Origin of the blue luminescence ofβ,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study onβ, ” Jpn. J. Appl. Phys. 41(2), L622–L625 (2002).
[Crossref]

MRS Bull. (1)

B. G. Lewis and D. C. Paine, “Application and processing of transparent conducting oxides,” MRS Bull. 25(08), 22–27 (2000).
[Crossref]

Phys. Rev. B (3)

M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, “Donor structure and electric transport mechanism inβ, ” Phys. Rev. B 68(15), 155207 (2003).
[Crossref]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B 62(15), 10766–10773 (2000).
[Crossref]

Phys. Status Solidi (1)

M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E. G. Villora, and K. Shimamura, “Polarization of optical spectra in transparent conductive oxideβ, ” Phys. Status Solidi 8(9), 2621–2624 (2011).
[Crossref]

Thin Solid Films (1)

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparentβ, ” Thin Solid Films 411(1), 134–139 (2002).
[Crossref]

Other (5)

A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 1970) pp 60–74.

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, 1993), Chaps. 2 and 7.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, 1999), Chap. 7.

S. W. S. Mckeever, Thermoluminescence of Solids (Cambridge University Press, 1985), pp143–148.

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 1996) p. 274.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption spectra for various β -Ga2O3 single crystals at 300 K.
Fig. 2
Fig. 2 Luminescence spectra observed for β - Ga2O3:Si with various excitation wavelengths at (a) 20 K and (b) 300 K.
Fig. 3
Fig. 3 Temperature dependence of the luminescence spectra for β -Ga2O3:Si excited with (a) 210 nm and (b) 270 nm.
Fig. 4
Fig. 4 Persistent phosphorescence spectra for β -Ga2O3 (4N) and β -Ga2O3:Si at 15 K when measured at 2 seconds after removal of 266 nm UV light.
Fig. 5
Fig. 5 Decay curves of the luminescence intensities at (a) 390 nm and (b) 520 nm for β -Ga2O3:Si when measured at 50 and 300 K with 270 nm excitation in the time range of 0-400 μ s.
Fig. 6
Fig. 6 (a) Decay curves of the luminescence intensities at 520 nm excited at 270 nm in the time range of 3-400 μ s for β -Ga2O3:Si with log-log scales. (b) Decay curves of the phosphorescence intensities excited at 266 nm and at 15 and 110 K in the time range of 1-103 s for β -Ga2O3 (4N) with log-log scales.
Fig. 7
Fig. 7 Temperature dependence of the ESR line width of conduction electrons in β -Ga2O3:Si. Solid curve is calculated using Eq. (1) and parameters of a = 0.053, b = 0.5 and Δ = 1430 K ( = 120 meV).
Fig. 8
Fig. 8 Pulse response of photocurrent produced by 266 nm light with a width of ~10 ns for β -Ga2O3 (4N) as a function of (a) applied voltage and (b) light power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ ( T ) = a + b × exp ( Δ / k T )
I ( t ) = A t { exp ( t / τ 1 ) exp ( t / τ 2 ) }

Metrics