Abstract

In this paper we present the results on the effect of γ-irradiation on the optical properties of bismuth-doped germanosilicate fibers. It has been revealed that the absorption and emission bands of the bismuth-related active centers are mildly affected by γ-radiation with a dose ranging from 1 to 8 kGy. Experimental data on the radiation-induced absorption (RIA) dynamics of Bi-doped fibers under irradiation and post-irradiation recovery have been obtained. The RIA spectra of the Bi-doped germanosilicate fibers have been measured. The effect of Bi concentration on the RIA level is discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gamma radiation and thermal-induced effects on the spectral performance of BACs in Bi/Er codoped aluminosilicate fibers

Q. C. Zhao, J. Z. Zhang, D. Sporea, Y. H. Luo, J. X. Wen, and G. D. Peng
Opt. Express 27(7) 9955-9964 (2019)

Electron beam irradiation and thermal-induced effects on the spectral properties of BAC-Al in Bi/Er codoped aluminosilicate fibers

Qiancheng Zhao, Yanhua Luo, Qun Hao, and Gang-Ding Peng
Opt. Mater. Express 9(11) 4287-4294 (2019)

Photobleaching effect in bismuth-doped germanosilicate fibers

Sergei Firstov, Sergey Alyshev, Vladimir Khopin, Mikhail Melkumov, Alexey Guryanov, and Evgeny Dianov
Opt. Express 23(15) 19226-19233 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm,” Opt. Lett. 39(24), 6927–6930 (2014).
    [Crossref] [PubMed]
  2. T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016), doi:.
    [Crossref] [PubMed]
  3. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett. 40(18), 4360–4363 (2015).
    [Crossref] [PubMed]
  4. V. W. S. Chan, “Optical sattelite networks,” J. Lightwave Technol. 21(11), 2811–2827 (2003).
    [Crossref]
  5. X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
    [Crossref]
  6. G. E. Sandoval-Romero, “Study of a superluminescent fiber radiator as a pumping source for a fiber-optic gyroscope,” J. Opt. Technol. 74(8), 573–578 (2007).
    [Crossref]
  7. J. Wen, W. Liu, Y. Dong, Y. Luo, G. D. Peng, N. Chen, F. Pang, Z. Chen, and T. Wang, “Radiation-induced photoluminescence enhancement of Bi/Al-codoped silica optical fibers via atomic layer deposition,” Opt. Express 23(22), 29004–29013 (2015), doi:.
    [Crossref] [PubMed]
  8. L. Peng, L. Lei, C. Ying-Bo, W. Yi-Bo, H. Xiong-Wei, P. Jing-Gang, L. Jin-Yan, D. Neng-Li, “Irradiation and temperature influence on the Bi-doped silica fiber,” Acta Physica Sinica 64(22), 0224220 (2015).
    [Crossref]
  9. J. Wang, J. Wen, Y. Dong, L. Liu, F. Pang, Y. Luo, G. Peng, Z. Chen, and T. Wang, “Influence of Gamma-ray irradiation on the spectral properties of Bi-doped silica fibers,” in Asia Communications and Photonics Conference, OSA Technical Digest Series (Optical Society of America, 2014), paper ATh4C.4.
    [Crossref]
  10. E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
    [Crossref]
  11. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
    [Crossref] [PubMed]
  12. A. S. Zlenko, V. M. Mashinsky, L. D. Iskhakova, S. L. Semjonov, V. V. Koltashev, N. M. Karatun, and E. M. Dianov, “Mechanisms of optical losses in Bi:SiO2 glass fibers,” Opt. Express 20(21), 23186–23200 (2012), doi:.
    [Crossref] [PubMed]
  13. M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. L. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Radiation Resistance of Er-Doped Silica Fibers: Effect of Host Glass Composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
    [Crossref]

2016 (2)

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016), doi:.
[Crossref] [PubMed]

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

2012 (1)

2011 (1)

2010 (1)

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

2007 (1)

2003 (1)

Alyshev, S.

Alyshev, S. V.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref] [PubMed]

Bubnov, M. M.

Bufetov, I. A.

Chan, V. W. S.

Chen, N.

Chen, Z.

Dianov, E.

Dianov, E. M.

Dong, Y.

Firstov, S.

Firstov, S. V.

Firstova, E. G.

Gladyshev, A. V.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

Guryanov, A. N.

Iskhakova, L. D.

Karatun, N. M.

Khopin, V. F.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Koltashev, V. V.

Likhachev, M. E.

Lipatov, D. S.

Liu, W.

Luo, Y.

Mashinsky, V. M.

Medvedkov, O. I.

Melkumov, M.

Melkumov, M. A.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref] [PubMed]

Noronen, T.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016), doi:.
[Crossref] [PubMed]

Okhotnikov, O. G.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016), doi:.
[Crossref] [PubMed]

Pang, F.

Peng, G. D.

Riumkin, K.

Riumkin, K. E.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref] [PubMed]

Sandoval-Romero, G. E.

Semjonov, S. L.

Shi, X.

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

Shubin, A.

Suo, X.

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

Tomashuk, A. L.

Vechkanov, N. N.

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

Wang, T.

Wen, J.

Yang, M.

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

Yang, Y.

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

Yashkov, M. V.

Zhao, Sh.

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

Zlenko, A. S.

Zotov, K. V.

J. Lightwave Technol. (2)

J. Opt. Technol. (1)

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (2)

X. Suo, Y. Yang, M. Yang, X. Shi, and Sh. Zhao, “High Stability and Radiation-resistance Broadband Fiber-optic Source,” Proc. SPIE 7853, 78533Z (2010).
[Crossref]

E. M. Dianov, S. V. Firstov, V. F. Khopin, S. V. Alyshev, K. E. Riumkin, A. V. Gladyshev, M. A. Melkumov, N. N. Vechkanov, and A. N. Guryanov, “Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm,” Proc. SPIE 9728, 97280U (2016).
[Crossref]

Sci. Rep. (1)

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016), doi:.
[Crossref] [PubMed]

Other (2)

L. Peng, L. Lei, C. Ying-Bo, W. Yi-Bo, H. Xiong-Wei, P. Jing-Gang, L. Jin-Yan, D. Neng-Li, “Irradiation and temperature influence on the Bi-doped silica fiber,” Acta Physica Sinica 64(22), 0224220 (2015).
[Crossref]

J. Wang, J. Wen, Y. Dong, L. Liu, F. Pang, Y. Luo, G. Peng, Z. Chen, and T. Wang, “Influence of Gamma-ray irradiation on the spectral properties of Bi-doped silica fibers,” in Asia Communications and Photonics Conference, OSA Technical Digest Series (Optical Society of America, 2014), paper ATh4C.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Refractive index profile of bismuth-doped fiber preform containing ~50% mol. GeO2.
Fig. 2
Fig. 2 Absorption spectra of Fiber #2 (a) and Fiber #3 (b) before and after γ-irradiation with a dose of 1 kGy. Dependence of loss at 1550 nm for Fiber #2 versus pump power is shown in inset (a). The unsaturated loss level of Fiber #3 is indicated by points (b).
Fig. 3
Fig. 3 Luminescence spectra (Fiber #2) of pristine and irradiated fibers upon excitation at 1550 nm. Irradiation dose is 1 kGy.
Fig. 4
Fig. 4 RIA at 1550 nm versus GeO2 concentration in fibers doped with bismuth. All fibers were γ-irradiated to a dose of 1 kGy. The digits indicate the fiber numbers in Table 1.
Fig. 5
Fig. 5 RIA spectra of Fiber #2 irradiated to doses of 1-8 kGy. RIA spectrum of Fiber #5 after γ-irradiation with a dose of 1 kGy is also shown for comparison. Dotted lines show interpolation of RIA in the spectral range where there are cut-off wavelengths of tested fiber.
Fig. 6
Fig. 6 Kinetics of RIA at 1500 and 1600 nm for Fiber #2 during irradiation (up to 1000 s) and its post-irradiation relaxation (after 1000 s). Dose of irradiation for 1000 s is approximately 1 kGy.

Tables (1)

Tables Icon

Table 1 Characteristics of fibers tested

Metrics