Abstract

The phosphor Sr0.97Al2O4:0.01Eu2+, 0.02Dy3+ was synthesized by a high temperature solid state reaction in a reducing atmosphere. After charging by ultraviolet radiation, the persistent luminescence decay was divided into different time ranges and well-fitted by a biexponential function, but the two lifetimes became longer with time of persistent luminescence decay. The fractional amplitude of the shorter lifetime increased with time, whereas that of the longer lifetime decreased. The change in lifetime has been associated with the emptying of a pseudo-continuum of trap states either from different traps or different levels of the same trap species. The investigation in photostimulated persistent luminescence indicated the sample could emit bright persistent luminescence again under infrared light excitation after the UV light-excited persistent luminescence had decayed completely. The NIR photostimulation exhibited a continuous broad band, with maximum at 760 nm, representing the emptying of filled traps into the conduction band. These results also infer that the traps are pseudo-continuous but the assignment of Dy2+ as the trapped species cannot be excluded. The read-in and write-out properties of the phosphor have been elucidated and these convey applications in information storage and retrieval.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution

Jonas Botterman and Philippe F. Smet
Opt. Express 23(15) A868-A881 (2015)

Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics

Jumpei Ueda, Tatsuaki Shinoda, and Setsuhisa Tanabe
Opt. Mater. Express 3(6) 787-793 (2013)

Reducing particle size of persistent luminescent SrAl2O4:Eu2+,Dy3+via microwave-assisted, reverse micelle synthesis

Erin Finley, Andrew S. Paterson, Angelica Cobb, Richard C. Willson, and Jakoah Brgoch
Opt. Mater. Express 7(7) 2597-2616 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Stat. Solidi a 187(2), 335–393 (2001).
    [Crossref]
  2. Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
    [Crossref] [PubMed]
  3. H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
    [Crossref]
  4. K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  5. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
    [Crossref] [PubMed]
  6. S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
    [Crossref]
  7. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref] [PubMed]
  8. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” J. Electrochem. Soc. Interf. 18, 42–45 (2009).
  9. J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
    [Crossref] [PubMed]
  10. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  11. P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
    [Crossref]
  12. Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
    [Crossref]
  13. C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
    [Crossref]
  14. T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
    [Crossref]
  15. K. Fukuda and K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178(9), 2709–2714 (2005).
    [Crossref]
  16. M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
    [Crossref]
  17. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).
  18. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  19. J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
    [Crossref]
  20. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
    [Crossref]
  21. G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
    [Crossref]
  22. A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
    [Crossref]
  23. J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
    [Crossref]
  24. W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
    [Crossref]
  25. Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
    [Crossref]
  26. R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
    [Crossref]
  27. J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
    [Crossref]
  28. Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
    [Crossref]
  29. T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
    [Crossref]
  30. P. Dorenbos and A. J. J. Bos, “Lanthanide level location and related thermoluminescence phenomena,” Radiat. Meas. 43(2-6), 139–145 (2008).
    [Crossref]
  31. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
    [Crossref]
  32. Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
    [Crossref]
  33. D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
    [Crossref] [PubMed]
  34. C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
    [Crossref]
  35. M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
    [Crossref]
  36. G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
    [Crossref]
  37. L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
    [Crossref]

2016 (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

2015 (4)

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

2014 (3)

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
[Crossref]

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

2013 (4)

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

2011 (3)

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

2010 (2)

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

2009 (2)

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” J. Electrochem. Soc. Interf. 18, 42–45 (2009).

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

2008 (1)

P. Dorenbos and A. J. J. Bos, “Lanthanide level location and related thermoluminescence phenomena,” Radiat. Meas. 43(2-6), 139–145 (2008).
[Crossref]

2007 (3)

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
[Crossref]

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

2006 (1)

C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
[Crossref]

2005 (5)

K. Fukuda and K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178(9), 2709–2714 (2005).
[Crossref]

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

2004 (2)

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

2002 (1)

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

2001 (1)

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Stat. Solidi a 187(2), 335–393 (2001).
[Crossref]

2000 (1)

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

1999 (1)

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

1996 (2)

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Alonso-Gutiérrez, P.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

An, B.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Avdeev, M.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Ayvacikli, M.

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

Bao, W.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Basavaraju, N.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Batentschuk, M.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

Bessière, A.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Binet, L.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Bisen, D. P.

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

Bos, A. J. J.

P. Dorenbos and A. J. J. Bos, “Lanthanide level location and related thermoluminescence phenomena,” Radiat. Meas. 43(2-6), 139–145 (2008).
[Crossref]

Botterman, J.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Brahme, N.

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

Can, N.

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

Chang, C.

C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
[Crossref]

Chen, X.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Cheng, W.

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

Choi, J.-S.

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

Chuang, Y.-J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Cordoncillo, E.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dittrich, S.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Dorenbos, P.

P. Dorenbos and A. J. J. Bos, “Lanthanide level location and related thermoluminescence phenomena,” Radiat. Meas. 43(2-6), 139–145 (2008).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

Duan, C.

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

Dutczak, D.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Ege, A.

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

Epelbaum, E.

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

Escribano, P.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Fu, Z.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

Fukuda, K.

K. Fukuda and K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178(9), 2709–2714 (2005).
[Crossref]

Fukushima, K.

K. Fukuda and K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178(9), 2709–2714 (2005).
[Crossref]

Gan, S.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Gandomi, A. H.

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

Gao, G.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Goetz-Neunhoeffer, F.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Gourier, D.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Grabow, J.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Gruber, S.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Hackenschmied, P.

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Holmstrom, S.

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Hölsä, J.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” J. Electrochem. Soc. Interf. 18, 42–45 (2009).

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Hong, G.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Huang, C.

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

Huang, Y.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Ji, Z.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Jia, W.

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Joos, J. J.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
[Crossref]

Ju, Q.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Julián, B.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Jüstel, T.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Kamiyanagi, Y.

Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
[Crossref]

Kaneyoshi, M.

Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
[Crossref]

Kharton, V. V.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Kim, J. S.

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Kitaura, M.

Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
[Crossref]

Kong, Z.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Krupa, J.-C.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Kumar Choubey, A.

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

Kurland, H.-D.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Kwon, Y.-N.

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

Lastusaari, M.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Legendziewicz, J.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Li, G.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Li, H.

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

Li, R.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Li, Y.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Liang, H.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Lim, G.-C.

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

Lin, Y.

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

Liu, F.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Liu, H.

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Liu, H. J.

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

Liu, Y.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Long, T.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Luo, W.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Mao, D.

C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
[Crossref]

Mao, Q.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Marchal, M.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Meijerink, A.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Müller, F. A.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Niittykoski, J.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Ning, L.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

Novák, P.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

Osvet, A.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Pan, F.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Pan, T.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

Pan, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Peng, T. Y.

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

Poelman, D.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Priolkar, K. R.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Qi, M.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Qiu, J.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Rahimi, M. R.

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Ronda, C.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Sanjuán, M. L.

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Schweizer, S.

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Stat. Solidi a 187(2), 335–393 (2001).
[Crossref]

Sharma, R.

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

Sharma, S. K.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Shi, R.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Shin, N.

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Smet, P. F.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Sohn, K.-S.

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Song, Y.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Tang, Z.

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

Viana, B.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Xi, J.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Xie, J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Xu, J.

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

Yakovlev, S.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yan, C. H.

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

Yan, W.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Yang, H. P.

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

Yaremchenko, A. A.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yen, W. M.

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Yerci, S.

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

Yuan, H.

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Yuan, Z.

C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
[Crossref]

Yun, G. J.

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

Zhang, F.

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

Zhang, J.

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Zhang, S.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

Zhang, Y.

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

Zhang, Z.

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

Zhen, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zhou, C.

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

Zhou, L.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Zhou, S.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

Zhou, W.

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

Zhu, H.

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Zollfrank, C.

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Acta Mater. (1)

C. Zollfrank, S. Gruber, M. Batentschuk, A. Osvet, F. Goetz-Neunhoeffer, S. Dittrich, J. Grabow, H.-D. Kurland, and F. A. Müller, “Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization,” Acta Mater. 61(19), 7133–7141 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. S. Kim, Y.-N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett. 90(24), 241916 (2007).
[Crossref]

Ceram. Int. (1)

Z. Ji, W. Bao, Q. Mao, J. Xi, Z. Kong, and J. Zhang, “Background illumination enhanced photo-stimulated up-conversion emission in persistent luminescent SrAl2O4:(Eu2+, Dy3+),” Ceram. Int. 41(9), 11646–11650 (2015).
[Crossref]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Chem. Soc. Rev. (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

J. Alloys Compd. (1)

C. Chang, Z. Yuan, and D. Mao, “Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method,” J. Alloys Compd. 415(1-2), 220–224 (2006).
[Crossref]

J. Ceram. Soc. Jpn. (1)

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

J. Electrochem. Soc. (2)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

J. Electrochem. Soc. Interf. (1)

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” J. Electrochem. Soc. Interf. 18, 42–45 (2009).

J. Eur. Ceram. Soc. (1)

Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, “Luminescent properties of SrAl2O4:Eu,Dy material prepared by the gel method,” J. Eur. Ceram. Soc. 20(12), 2129–2132 (2000).
[Crossref]

J. Lumin. (4)

M. Ayvacıklı, A. Ege, S. Yerci, and N. Can, “Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic,” J. Lumin. 131(11), 2432–2439 (2011).
[Crossref]

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in-vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, “Photo-stimulated luminescence in SrAl2O4:Eu2+,Dy3+ single crystal fibers,” J. Lumin. 83–84, 465–469 (1999).
[Crossref]

Y. Kamiyanagi, M. Kitaura, and M. Kaneyoshi, “Temperature dependence of long-lasting afterglow in SrAl2O4:Eu,Dy phosphor,” J. Lumin. 122–123, 509–511 (2007).
[Crossref]

J. Phys. Chem. C (2)

R. Shi, M. Qi, L. Ning, F. Pan, L. Zhou, W. Zhou, Y. Huang, and H. Liang, “Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4,” J. Phys. Chem. C 119(33), 19326–19332 (2015).
[Crossref]

L. Ning, W. Cheng, C. Zhou, C. Duan, and Y. Zhang, “Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study,” J. Phys. Chem. C 118(34), 19940–19947 (2014).
[Crossref]

J. Rare Earths (2)

G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, and G. Hong, “Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors,” J. Rare Earths 28(1), 22–25 (2010).
[Crossref]

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

J. Solid State Chem. (4)

K. Fukuda and K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178(9), 2709–2714 (2005).
[Crossref]

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

P. Escribano, M. Marchal, M. L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, “Low-temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization,” J. Solid State Chem. 178(6), 1978–1987 (2005).
[Crossref]

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem. 178(1), 230–233 (2005).
[Crossref]

Mater. Chem. Phys. (1)

T. Y. Peng, H. J. Liu, H. P. Yang, and C. H. Yan, “Synthesis of SrAl2O4:Eu,Dy phosphor nanometer powders by sol–gel processes and its optical properties,” Mater. Chem. Phys. 85(1), 68–72 (2004).
[Crossref]

Mater. Sci. Eng. B (1)

H. Li, P. Hackenschmied, E. Epelbaum, and M. Batentschuk, “Imaging performance of polycrystalline BaFBr:Eu2+ storage phosphor plates,” Mater. Sci. Eng. B 94(1), 32–39 (2002).
[Crossref]

Materials (Basel) (1)

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Nanoscale (1)

Q. Ju, W. Luo, Y. Liu, H. Zhu, R. Li, and X. Chen, “Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties,” Nanoscale 2(7), 1208–1212 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Phys. Rev. (2)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B  84, 0855140 (2011).

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. 90(8), 085147 (2014).
[Crossref]

Phys. Stat. Solidi a (1)

S. Schweizer, “Physics and Current Understanding of X-Ray Storage Phosphors,” Phys. Stat. Solidi a 187(2), 335–393 (2001).
[Crossref]

Radiat. Meas. (2)

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

P. Dorenbos and A. J. J. Bos, “Lanthanide level location and related thermoluminescence phenomena,” Radiat. Meas. 43(2-6), 139–145 (2008).
[Crossref]

Sci. Rep. (1)

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

G. J. Yun, M. R. Rahimi, A. H. Gandomi, G.-C. Lim, and J.-S. Choi, “Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings,” Smart Mater. Struct. 22(5), 055006 (2013).
[Crossref]

The Open Nanosci. (1)

A. Kumar Choubey, N. Brahme, D. P. Bisen, and R. Sharma, “Mechanoluminescence and thermoluminescence of SrAl2O4:Eu nano-phosphors,” The Open Nanosci. 5(1), 41–44 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD pattern of SED phosphor synthesized by solid state method.
Fig. 2
Fig. 2 Photoluminescence excitation (a) and emission (b) spectra and persistent luminescence spectrum (c) of SED phosphor. The peak in (a) at 396 nm is due to Eu3+. Persistent luminescence was obtained using 5 min delay after excitation by 360 nm radiation.
Fig. 3
Fig. 3 (a) Persistent luminescence decay curve of SED phosphor monitoring 510 nm emission after 356 nm irradiation for 20 min. Note the logarithmic scale. The top inset shows the persistent luminescence spectrum after 10 min delay. (b) Plot of the fitted lifetimes from biexponential decay against time of persistent luminescence. The fitting ranges are horizontally underlined together with the adjusted coefficients of determination. The fraction of the total emission intensity for the components τ1 and τ2 is indicated at the side of each data point.
Fig. 4
Fig. 4 Normalized 510 nm persistent luminescence intensity at 10s after excitation (I10s) plotted against the excitation wavelength. Some relevant wavelengths are marked. All data were collected from the bleached SED sample.
Fig. 5
Fig. 5 Thermoluminescence spectra of the SED phosphor recorded at different delay times after pre-irradiation by ultraviolet radiation at 356 nm for 2 min. The peak temperatures are indicated.
Fig. 6
Fig. 6 The NIR photo-stimulated persistent luminescence decay curve of the SED disc. The decay curve was recorded at 1 min following the 420 nm excitation for 1 min, and then stimulation by 760 nm NIR radiation was employed at “On” and switched off at “Off”. The inset shows the excitation spectrum when monitoring 510 nm emission using NIR photostimulation at 10 min after the stoppage of UV excitation for 1 min.
Fig. 7
Fig. 7 The write-in (a) and read-out (b) wavelength ranges for SED with normalization of the NIR photostimulation intensity. The decay following various write-in wavelengths (c) and the rise for NIR photostimulation at selected wavelengths after charging at 420 nm (d). The emission at 510 nm was monitored in all cases. Refer to the text for a detailed explanation of these experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ 1 = ( 1105±61 ) ( 1283±44 )exp[ ( 0.0008±0.0001 )t ]  R 2 adj = 0.9971
τ 2 = ( 310±87 ) ( 396±69 )exp[ ( 0.0011±0.0004 )t ]  R 2 adj = 0.9717

Metrics