Abstract

In the present study, graphite-like +Ni/SiO2/Si wafer specimens were prepared using a co-sputtering system. Then, indium gallium zinc oxide (IGZO) films were deposited onto the graphite-like +Ni/SiO2/Si wafer specimens at deposition powers of 60, 80, and 100 W, respectively. The effects of IGZO deposition power on the specimen’s microstructure and the vacancy defects in the graphite-like +Ni layer are evaluated in terms of the electrical and mechanical properties of the as-prepared specimens. The effects of the graphite-like +Ni film on the electrical resistance of the IGZO film with microcracks is evaluated using a tribotester. The quantity and mean size of microcracks and variations of electrical resistance of the IGZO/graphite-like +Ni/SiO2/Si wafer specimens with time are used to evaluate the role of the graphite-like +Ni layer as an alternate conductor of electric current when the IGZO film is degraded by microcracks. The growth of hillocks in the graphite-like +Ni layer can be enhanced by increasing the IGZO deposition power. These hillocks cause the graphite-like +Ni layer to be convex and have an uneven film thickness, and lead to vacancy defects in the graphite-like film. The O atoms of IGZO were incorporated into graphene in the graphite-like layer as substitutional impurities. The effects of these impurities on the electrical structure with a characteristic of superconductors occur intermittently in the tribotests, resulting in a sharp reduction in the electrical resistance of a specimen. An increase in the intensity ratio, IRO2, related to oxygen vacancies, increases the peak intensities (PIs) of elemental Ga and the Ga-O bond, and decreases that of the Ga-Ga bond. In the IGZO/Glass specimens, a small reduction of the average transmittance is created in the specimens prepared by increasing the deposition power from 60 W to 100 W. The behavior of reflection is exactly opposite to that of transmittance. An increase in deposition power is favorable for the rise of optical band gap (Eg). Increasing the concentration of Zn2p3/2 or Zn2p1/2 increases PIGreen in photoluminescence profiles. Reductions in either In atoms or C-C and C-O bonds increase PIOrange. PIRed and can be increased by either increasing PIGa-Ga or decreasing the values of PIGa2p3/2, PIGa2p1/2, and PIGa-O.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence

Tse-Chang Li, Chang-Fu Han, Ta-Hsuan Kuan, and Jen-Fin Lin
Opt. Mater. Express 6(2) 343-366 (2016)

Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
    [Crossref]
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
    [Crossref] [PubMed]
  3. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
    [Crossref]
  4. J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
    [Crossref]
  5. J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
    [Crossref]
  6. J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
    [Crossref]
  7. C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
    [Crossref]
  8. P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
    [Crossref]
  9. L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
    [Crossref]
  10. P. Chaudhari, “Hillock growth in thin films,” J. Appl. Phys. 45(10), 4339–4346 (1974).
    [Crossref]
  11. H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
    [Crossref]
  12. C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al–Cu films,” J. Mater. Res. 4(05), 1172–1181 (1989).
    [Crossref]
  13. F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
    [Crossref]
  14. D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
    [Crossref]
  15. C. Kylner and L. Mattsson, “Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time,” Thin Solid Films 307(1-2), 169–177 (1997).
    [Crossref]
  16. A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
    [Crossref]
  17. T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
    [Crossref]
  18. J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
    [Crossref]
  19. G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
    [Crossref] [PubMed]
  20. C. Baykasoglu and A. Mugan, “Nonlinear fracture analysis of single-layer graphene sheets,” Eng. Fract. Mech. 96, 241–250 (2012).
    [Crossref]
  21. R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
    [Crossref]
  22. M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
    [Crossref] [PubMed]
  23. L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
    [Crossref] [PubMed]
  24. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
    [Crossref] [PubMed]
  25. D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
    [Crossref]
  26. S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
    [Crossref]
  27. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
    [Crossref] [PubMed]
  28. Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
    [Crossref] [PubMed]
  29. B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
    [Crossref]
  30. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
    [Crossref]
  31. R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B 20(2), 392–401 (1979).
    [Crossref]
  32. R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
    [Crossref]
  33. A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).
  34. J. Conroy, N. K. Verma, R. J. Smith, E. Rezvani, G. S. Duesberg, J. N. Coleman, and Y. Volkov, “Biocompatibility of pristine graphene monolayers, nanosheets and thin films,” arXiv preprint arXiv:1406.2497, 1–29 (2014).
  35. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  36. R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
    [Crossref]
  37. Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
    [Crossref]
  38. T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
    [Crossref]
  39. S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
    [Crossref] [PubMed]
  40. S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).
  41. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).
  42. S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
    [Crossref]
  43. S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
    [Crossref] [PubMed]
  44. G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
    [Crossref]
  45. B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
    [Crossref]
  46. T. C. Li, C. F. Han, T. H. Kuan, and J. F. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Opt. Mater. Express 6(2), 343–366 (2016).
    [Crossref]
  47. S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
    [Crossref]
  48. R. A. Burton, “Thermal deformation in frictionally heated contact,” Wear 59(1), 1–20 (1980).
    [Crossref]
  49. J. R. Barber, “Thermoelastic instabilities in the sliding of comforming solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 312(1510), 381–394 (1969).
    [Crossref]
  50. K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985).
  51. M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,” Phys. Rev. Lett. 100(17), 175503 (2008).
    [Crossref] [PubMed]
  52. B. Wang and S. T. Pantelides, “Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules,” Phys. Rev. B 83(24), 245403 (2011).
    [Crossref]
  53. L. Tsetseris and S. T. Pantelides, “Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes,” Carbon 47(3), 901–908 (2009).
    [Crossref]
  54. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
    [Crossref] [PubMed]
  55. D. W. Boukhvalov and M. I. Katsnelson, “Chemical functionalization of graphene with defects,” Nano Lett. 8(12), 4373–4379 (2008).
    [Crossref] [PubMed]
  56. F. Cervantes-Sodi, G. Csányi, S. Piscanec, and A. C. Ferrari, “Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties,” Phys. Rev. B77, 165427 (12 pages) (2008).
    [Crossref]
  57. A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
    [Crossref] [PubMed]
  58. A. F. Morpurgo and F. Guinea, “Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene,” Phys. Rev. Lett. 97(19), 196804 (2006).
    [Crossref] [PubMed]
  59. A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
    [Crossref]
  60. A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
    [Crossref] [PubMed]
  61. W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
    [Crossref]
  62. V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
    [Crossref]

2016 (1)

2015 (1)

B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
[Crossref]

2014 (2)

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
[Crossref]

2013 (6)

C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
[Crossref]

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
[Crossref] [PubMed]

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

2012 (7)

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

C. Baykasoglu and A. Mugan, “Nonlinear fracture analysis of single-layer graphene sheets,” Eng. Fract. Mech. 96, 241–250 (2012).
[Crossref]

R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
[Crossref]

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

2011 (4)

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
[Crossref] [PubMed]

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

B. Wang and S. T. Pantelides, “Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules,” Phys. Rev. B 83(24), 245403 (2011).
[Crossref]

2010 (7)

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
[Crossref]

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

2009 (5)

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

L. Tsetseris and S. T. Pantelides, “Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes,” Carbon 47(3), 901–908 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

2008 (4)

D. W. Boukhvalov and M. I. Katsnelson, “Chemical functionalization of graphene with defects,” Nano Lett. 8(12), 4373–4379 (2008).
[Crossref] [PubMed]

M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,” Phys. Rev. Lett. 100(17), 175503 (2008).
[Crossref] [PubMed]

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

2007 (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

2006 (4)

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

A. F. Morpurgo and F. Guinea, “Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene,” Phys. Rev. Lett. 97(19), 196804 (2006).
[Crossref] [PubMed]

A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
[Crossref]

2005 (2)

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
[Crossref]

2004 (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

2003 (2)

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
[Crossref] [PubMed]

2000 (1)

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

1997 (1)

C. Kylner and L. Mattsson, “Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time,” Thin Solid Films 307(1-2), 169–177 (1997).
[Crossref]

1992 (1)

D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
[Crossref]

1991 (1)

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

1989 (1)

C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al–Cu films,” J. Mater. Res. 4(05), 1172–1181 (1989).
[Crossref]

1986 (1)

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

1981 (1)

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

1980 (1)

R. A. Burton, “Thermal deformation in frictionally heated contact,” Wear 59(1), 1–20 (1980).
[Crossref]

1979 (1)

R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B 20(2), 392–401 (1979).
[Crossref]

1974 (1)

P. Chaudhari, “Hillock growth in thin films,” J. Appl. Phys. 45(10), 4339–4346 (1974).
[Crossref]

1969 (1)

J. R. Barber, “Thermoelastic instabilities in the sliding of comforming solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 312(1510), 381–394 (1969).
[Crossref]

Abe, K.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

Adamchuk, V. K.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Ahn, B. D.

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Ahn, C. H.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

Ajayan, P. M.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Akkipeddi, R.

B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
[Crossref]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

An, S. J.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Bae, B. S.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Bae, S. Y.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Baik, J.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Balatsky, A. V.

A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
[Crossref]

Balicas, L.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Banhart, F.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
[Crossref] [PubMed]

Barber, J. R.

J. R. Barber, “Thermoelastic instabilities in the sliding of comforming solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 312(1510), 381–394 (1969).
[Crossref]

Baykasoglu, C.

C. Baykasoglu and A. Mugan, “Nonlinear fracture analysis of single-layer graphene sheets,” Eng. Fract. Mech. 96, 241–250 (2012).
[Crossref]

Beitler, E.

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

Blase, X.

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

Boukhvalov, D. W.

D. W. Boukhvalov and M. I. Katsnelson, “Chemical functionalization of graphene with defects,” Nano Lett. 8(12), 4373–4379 (2008).
[Crossref] [PubMed]

Burton, R. A.

R. A. Burton, “Thermal deformation in frictionally heated contact,” Wear 59(1), 1–20 (1980).
[Crossref]

Cadelano, E.

R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
[Crossref]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Carr, L. D.

M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,” Phys. Rev. Lett. 100(17), 175503 (2008).
[Crossref] [PubMed]

Chamberlain, S. G.

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

Chang, C. Y.

C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al–Cu films,” J. Mater. Res. 4(05), 1172–1181 (1989).
[Crossref]

Chaudhari, P.

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

P. Chaudhari, “Hillock growth in thin films,” J. Appl. Phys. 45(10), 4339–4346 (1974).
[Crossref]

Chen, J.

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Chen, T. P.

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

Cheng, M.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Cho, H. H.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

Cho, H. K.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

Cho, K. I.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Chung, J. G.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Ci, L.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Coleman, J. N.

R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
[Crossref]

Colombo, L.

R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cooper, R. C.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Crawford, B.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Csányi, G.

A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
[Crossref] [PubMed]

Deng, S.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Dettori, R.

R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
[Crossref]

Dobrotvorskii, A. M.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Du, H.

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Ericson, F.

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

Facchetti, A.

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Fan, L.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

Fischbach, D. B.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

Fu, Y.

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Gerth, D.

D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
[Crossref]

Gong, H.

B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
[Crossref]

Gordienko, S. O.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Gudat, W.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Guinea, F.

A. F. Morpurgo and F. Guinea, “Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene,” Phys. Rev. Lett. 97(19), 196804 (2006).
[Crossref] [PubMed]

Gujar, T. P.

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Ha, Y. G.

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Hammerberg, A. G.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Han, C. F.

Han, S. H.

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Hayashi, R.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

He, C.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Hirano, M.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Hirov, A. S.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Hone, J.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Hosono, H.

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Huang, H. C. W.

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

Huang, L.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Huang, Y. P.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Jariwala, D.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Jeong, S.

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Jeong, W. H.

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

Jeong, Y.

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Jin, C.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Jun, T.

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Jung, C. H.

C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Jung, S. H.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Kamiya, T.

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Kang, H. I.

C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
[Crossref]

Kang, J. H.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Kang, S. J.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Kao, M. T.

T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
[Crossref]

Katsnelson, M. I.

D. W. Boukhvalov and M. I. Katsnelson, “Chemical functionalization of graphene with defects,” Nano Lett. 8(12), 4373–4379 (2008).
[Crossref] [PubMed]

Katzer, D.

D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
[Crossref]

Kim, D.

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Kim, D. L.

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

Kim, G. H.

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Kim, H. J.

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Kim, H. S.

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Kim, J. H.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

Kim, K. H.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kircher, C. J.

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

Koratkar, N.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Kotakoski, J.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
[Crossref] [PubMed]

Krasheninnikov, A. V.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
[Crossref] [PubMed]

Kristensen, N.

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

Krohn, M.

D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
[Crossref]

Kuan, T. H.

Kumar, B.

B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
[Crossref]

Kumomi, H.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

Kylner, C.

C. Kylner and L. Mattsson, “Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time,” Thin Solid Films 307(1-2), 169–177 (1997).
[Crossref]

Kysar, J. W.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Lee, C.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Lee, G. H.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Lee, J.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Lee, S.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Leong, K. C.

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

Lherbier, A.

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

Li, L.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

Li, T. C.

T. C. Li, C. F. Han, T. H. Kuan, and J. F. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Opt. Mater. Express 6(2), 343–366 (2016).
[Crossref]

T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
[Crossref]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Li, X. F.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Li, X. S.

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Li, Y.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Lin, J. F.

T. C. Li, C. F. Han, T. H. Kuan, and J. F. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Opt. Mater. Express 6(2), 343–366 (2016).
[Crossref]

B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
[Crossref]

T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
[Crossref]

Liu, C.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

Liu, F.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Liu, P.

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

Liu, P. T.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Liu, Y. C.

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Liu, Z.

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

Loehr, T. M.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

Lokhande, C. D.

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Lotya, M.

R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
[Crossref]

Lusk, M. T.

M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,” Phys. Rev. Lett. 100(17), 175503 (2008).
[Crossref] [PubMed]

Lysenko, V. S.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Lytvyn, P. M.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Ma, F.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

Mane, R. S.

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Marks, T. J.

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Mattsson, L.

C. Kylner and L. Mattsson, “Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time,” Thin Solid Films 307(1-2), 169–177 (1997).
[Crossref]

Miao, W. N.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Moon, H. J.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Moon, J.

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Morpurgo, A. F.

A. F. Morpurgo and F. Guinea, “Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene,” Phys. Rev. Lett. 97(19), 196804 (2006).
[Crossref] [PubMed]

Mugan, A.

C. Baykasoglu and A. Mugan, “Nonlinear fracture analysis of single-layer graphene sheets,” Eng. Fract. Mech. 96, 241–250 (2012).
[Crossref]

Murakami, M.

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

Murthy, R. V. R.

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

Na, C. W.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Nathan, A.

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

Nazarov, A. N.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Nemanich, R. J.

R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B 20(2), 392–401 (1979).
[Crossref]

Nevidomskyy, A. H.

A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
[Crossref] [PubMed]

Nguyen, B. S.

B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
[Crossref]

Nikolenko, A. S.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Niquet, Y. M.

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

Nomura, K.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Oliver, W.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Pantelides, S. T.

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

B. Wang and S. T. Pantelides, “Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules,” Phys. Rev. B 83(24), 245403 (2011).
[Crossref]

L. Tsetseris and S. T. Pantelides, “Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes,” Carbon 47(3), 901–908 (2009).
[Crossref]

Park, B.

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

Park, J.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Payne, M. C.

A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
[Crossref] [PubMed]

Peng, Z.

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

Perng, D. C.

B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
[Crossref]

Petrone, N.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Popov, V. P.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Puzyrev, Y.

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

Rader, O.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Rafiee, J.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Rafiee, M. A.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Rim, Y. S.

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

Roche, S.

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Rusavsky, A. V.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Ryu, M. K.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Sato, A.

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

Schweitz, J. Å.

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

Seo, D. K.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

She, J.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Shi, D.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Shi, Z.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Shieh, H. D.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Shikin, A. M.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Shin, H. J.

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Shin, H. S.

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

Shin, S. W.

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

Shinde, V. R.

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Smith, R. J.

R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
[Crossref]

Smith, U.

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

Solin, S. A.

R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B 20(2), 392–401 (1979).
[Crossref]

Song, H.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Song, K.

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

Song, L.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Song, Z.

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

Srivastava, A.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Srivastava, I.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Storr, K.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Strelchuk, V. V.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Stubrov, Yu. Yu.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Su, X.

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

Sun, Z.

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Tan, C. S.

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

Tour, J. M.

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

Triozon, F.

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

Tsetseris, L.

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

L. Tsetseris and S. T. Pantelides, “Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes,” Carbon 47(3), 901–908 (2009).
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Usachov, D.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

van der Zande, A.

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Varykhalov, A.

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

Vasin, A. V.

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Vekhter, I.

A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
[Crossref]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Vidano, R. P.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

Vook, R. W.

C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al–Cu films,” J. Mater. Res. 4(05), 1172–1181 (1989).
[Crossref]

Wang, B.

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

B. Wang and S. T. Pantelides, “Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules,” Phys. Rev. B 83(24), 245403 (2011).
[Crossref]

Wang, D.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Wang, L.

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

Wang, R.

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

Wang, Z.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Wang, Z. F.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Wei, N.

L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
[Crossref] [PubMed]

Willis, L. J.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

Wu, D.

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Xie, G.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Xu, L.

L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
[Crossref] [PubMed]

Xu, N.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Yan, X. J.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Yan, Z.

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, R.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Yang, W.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Yao, J.

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

Yoon, D. H.

C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
[Crossref]

Yu, Z. Z.

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Yun, E. J.

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

Zeng, X. T.

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Zhang, G.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Zhang, L.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Zhang, Q.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Zhang, S.

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Zhang, Z. J.

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

Zhao, J.

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Zheng, Y.

L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
[Crossref] [PubMed]

Zhu, J. X.

A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
[Crossref]

Zhu, Y.

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

ACS Nano (2)

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5(1), 26–41 (2011).
[Crossref] [PubMed]

Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, “Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel,” ACS Nano 5(10), 8241–8247 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater. 22(12), 1346–1350 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett. 97(23), 233502 (2010).
[Crossref]

B. S. Nguyen, J. F. Lin, and D. C. Perng, “Non-vacuum growth of graphene films using solid carbon source,” Appl. Phys. Lett. 106(22), 221604 (2015).
[Crossref]

A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett. 94(13), 133502 (2009).
[Crossref]

J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, “Ultra-sensitive strain sensors based on piezoresistive nanographene films,” Appl. Phys. Lett. 101(6), 063112 (2012).
[Crossref]

Carbon (1)

L. Tsetseris and S. T. Pantelides, “Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes,” Carbon 47(3), 901–908 (2009).
[Crossref]

Condes. Matter (1)

R. Dettori, E. Cadelano, and L. Colombo, ““Elastic fields and moduli in defected graphene,” J. Phys.-,” Condes. Matter 24(10), 104020 (2012).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

S. J. Kang, J. Baik, H. J. Shin, J. G. Chung, K. H. Kim, and J. Lee, “X-ray photoelectron spectroscopic investigation of air-annealed amorphous In-Ga-Zn-O thin-film surface electronic and photonic devices, and systems,” ECS J. Solid State Sci. Technol. 2(9), Q192–Q194 (2013).
[Crossref]

Eng. Fract. Mech. (1)

C. Baykasoglu and A. Mugan, “Nonlinear fracture analysis of single-layer graphene sheets,” Eng. Fract. Mech. 96, 241–250 (2012).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Dev. 58(4), 1121–1126 (2011).
[Crossref]

J. Appl. Phys. (2)

P. Chaudhari, “Hillock growth in thin films,” J. Appl. Phys. 45(10), 4339–4346 (1974).
[Crossref]

B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system,” J. Appl. Phys. 97(6), 063706 (2005).
[Crossref]

J. Ceram. Process. Res. (1)

S. H. Jung, H. J. Moon, M. K. Ryu, K. I. Cho, B. S. Bae, and E. J. Yun, “The effects of high-energy electron beam irradiation on the properties of IGZO thin films prepared by rf magnetron sputtering,” J. Ceram. Process. Res. 13, s246–s250 (2012).

J. Mater. Chem. (2)

J. H. Kim, D. K. Seo, C. H. Ahn, S. W. Shin, H. H. Cho, and H. K. Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties,” J. Mater. Chem. 22(32), 16312–16317 (2012).
[Crossref]

K. Song, D. Kim, X. S. Li, T. Jun, Y. Jeong, and J. Moon, “Solution processed invisible all-oxide thin film transistors,” J. Mater. Chem. 19(46), 8881–8886 (2009).
[Crossref]

J. Mater. Res. (1)

C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al–Cu films,” J. Mater. Res. 4(05), 1172–1181 (1989).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

T. C. Li, M. T. Kao, and J. F. Lin, “Effects of deposition and annealing conditions on the defects in the Al/glass composites of TFT specimens,” J. Mater. Sci. Mater. Electron. 25(10), 4425–4433 (2014).
[Crossref]

J. Non-Cryst. Solids (1)

J. Chen, L. Wang, X. Su, and R. Wang, “Pulsed laser deposited InGaZnO thin film on silica glass,” J. Non-Cryst. Solids 358(17), 2466–2469 (2012).
[Crossref]

J. Phys. Chem. B (1)

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, “Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films,” J. Vac. Sci. Technol. A 32(2), 021506 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

F. Ericson, N. Kristensen, J. Å. Schweitz, and U. Smith, “A transmission electron microscopy study of hillocks in thin aluminum films,” J. Vac. Sci. Technol. B 9(1), 58–63 (1991).
[Crossref]

Mater. Chem. Phys. (1)

V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study,” Mater. Chem. Phys. 96(2-3), 326–330 (2006).
[Crossref]

Microelectron. Reliab. (1)

A. Nathan, R. V. R. Murthy, B. Park, and S. G. Chamberlain, “High performance a-Si:H thin film transistors based on aluminum gate metallization,” Microelectron. Reliab. 40(6), 947–953 (2000).
[Crossref]

MRS Bull. (1)

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, “Defects and doping and their role in functionalizing graphene,” MRS Bull. 37(12), 1187–1194 (2012).
[Crossref]

Nano Lett. (1)

D. W. Boukhvalov and M. I. Katsnelson, “Chemical functionalization of graphene with defects,” Nano Lett. 8(12), 4373–4379 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24(50), 505703 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Mater. 9(5), 430–435 (2010).
[Crossref] [PubMed]

Nature (2)

Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature 468(7323), 549–552 (2010).
[Crossref] [PubMed]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

New J. Phys. (1)

R. J. Smith, M. Lotya, and J. N. Coleman, “The importance of repulsive potential barriers for the dispersion of graphene using surfactants,” New J. Phys. 12(12), 125008 (2010).
[Crossref]

NPG Asia Mater. (1)

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

Opt. Mater. Express (1)

Philos. Mag. A (1)

H. C. W. Huang, P. Chaudhari, C. J. Kircher, and M. Murakami, “Hillock growth kinetics in thin Pb-In-Au films,” Philos. Mag. A 54(4), 583–599 (1986).
[Crossref]

Phys. Rev. B (3)

D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, “Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces,” Phys. Rev. B 78(8), 085403 (2008).
[Crossref]

R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B 20(2), 392–401 (1979).
[Crossref]

B. Wang and S. T. Pantelides, “Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules,” Phys. Rev. B 83(24), 245403 (2011).
[Crossref]

Phys. Rev. Lett. (4)

A. H. Nevidomskyy, G. Csányi, and M. C. Payne, “Chemically active substitutional nitrogen impurity in carbon nanotubes,” Phys. Rev. Lett. 91(10), 105502 (2003).
[Crossref] [PubMed]

A. F. Morpurgo and F. Guinea, “Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene,” Phys. Rev. Lett. 97(19), 196804 (2006).
[Crossref] [PubMed]

A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808 (2008).
[Crossref] [PubMed]

M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,” Phys. Rev. Lett. 100(17), 175503 (2008).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. R. Barber, “Thermoelastic instabilities in the sliding of comforming solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 312(1510), 381–394 (1969).
[Crossref]

Rev. Mod. Phys. (1)

A. V. Balatsky, I. Vekhter, and J. X. Zhu, “Impurity-induced states in conventional and unconventional superconductors,” Rev. Mod. Phys. 78(2), 373–433 (2006).
[Crossref]

Science (2)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science 340(6136), 1073–1076 (2013).
[Crossref] [PubMed]

Semicon. Phys. Quant. Electr. & Optoelec. (1)

A. N. Nazarov, A. V. Vasin, S. O. Gordienko, P. M. Lytvyn, V. V. Strelchuk, A. S. Nikolenko, Yu. Yu. Stubrov, A. S. Hirov, A. V. Rusavsky, V. P. Popov, and V. S. Lysenko, “Graphene layers fabricated from the Ni/a-SiC bilayer precursor,” Semicon. Phys. Quant. Electr. & Optoelec. 16, 322–330 (2013).

Small (1)

M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small 6(2), 179–183 (2010).
[Crossref] [PubMed]

Solid State Commun. (2)

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun. 39(2), 341–344 (1981).
[Crossref]

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

Solid-State Electron. (1)

C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron. 79, 125–129 (2013).
[Crossref]

Surf. Coat. Tech. (1)

S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings,” Surf. Coat. Tech. 162(1), 42–48 (2003).
[Crossref]

Thin Solid Films (5)

G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films 517(14), 4007–4010 (2009).
[Crossref]

W. N. Miao, X. F. Li, Q. Zhang, L. Huang, Z. J. Zhang, L. Zhang, and X. J. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films 500(1-2), 70–73 (2006).
[Crossref]

P. Liu, T. P. Chen, Z. Liu, C. S. Tan, and K. C. Leong, “Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films,” Thin Solid Films 545, 533–536 (2013).
[Crossref]

D. Gerth, D. Katzer, and M. Krohn, “Study of the thermal behaviour of thin aluminium alloy films,” Thin Solid Films 208(1), 67–75 (1992).
[Crossref]

C. Kylner and L. Mattsson, “Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time,” Thin Solid Films 307(1-2), 169–177 (1997).
[Crossref]

Wear (1)

R. A. Burton, “Thermal deformation in frictionally heated contact,” Wear 59(1), 1–20 (1980).
[Crossref]

Other (4)

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).

K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985).

F. Cervantes-Sodi, G. Csányi, S. Piscanec, and A. C. Ferrari, “Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties,” Phys. Rev. B77, 165427 (12 pages) (2008).
[Crossref]

J. Conroy, N. K. Verma, R. J. Smith, E. Rezvani, G. S. Duesberg, J. N. Coleman, and Y. Volkov, “Biocompatibility of pristine graphene monolayers, nanosheets and thin films,” arXiv preprint arXiv:1406.2497, 1–29 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 (a) The SEM image of the graphite-like + Ni / SiO2 / Si wafer specimen; (b) the Raman spectrum with 532 nm as the excitation.
Fig. 2
Fig. 2 Photograph of tribotester.
Fig. 3
Fig. 3 SEM images of as-prepared IGZO / graphite-like + Ni / SiO2 / Si wafer specimens prepared with IGZO deposition powers of (a) 60 W, (b) 80 W, and (c) 100 W.
Fig. 4
Fig. 4 Lateral surfaces of as-prepared IGZO / graphite-like + Ni / SiO2 / Si wafer specimens prepared with IGZO deposition powers of (a) 60 W, (b) 80 W, and (c) 100 W. (d) thickness of IGZO film versus IGZO deposition power.
Fig. 5
Fig. 5 TEM images of as-prepared 80-W specimen in regions (a) without and (b) with hillock.
Fig. 6
Fig. 6 (a) SEM image of lateral surface of as-prepared 80-W specimen and TEM SAED patterns for areas labeled (b) “1” and (c) “2”.
Fig. 7
Fig. 7 XRD pattern for as-prepared 60-, 80-, and 100-W specimens.
Fig. 8
Fig. 8 Deconvolutions of XPS O 1s XPS spectra for (a) 60-, (b) 80-, and (c) 100-W specimens.
Fig. 9
Fig. 9 XPS Zn spectra for three kinds of specimen.
Fig. 10
Fig. 10 Deconvolutions of XPS Ga 3d spectra for (a) 60-, (b) 80-, and (c) 100-W specimens. (d) Ga 2p3/2 and Ga 2p1/2 spectra of above three specimens.
Fig. 11
Fig. 11 XPS In 3d5/2 and In 3d3/2 spectra of three specimens.
Fig. 12
Fig. 12 XPS C 1s spectra of three specimens.
Fig. 13
Fig. 13 (a) Acceleration in y-direction, (b) frictional force in x-direction, and (c) normal contact force in y-direction for 60-W specimen at 100th cycle.
Fig. 14
Fig. 14 SEM images of worn surfaces of (a) 60-, (b) 80-, and (c) 100-W specimens at 300th cycle. (d) Penetration depths of microcracks in lateral surface of 100-W specimen obtained at 300th cycle.
Fig. 15
Fig. 15 Variations of electrical resistance with number of cycles for (a) 60-, (b) 80-, and (c) 100-W specimens.
Fig. 16
Fig. 16 XPS C 1s spectra for 80-W specimen at 100th, 200th, and 300th cycles, respectively.
Fig. 17
Fig. 17 Electrical resistance changes in 80-W specimen as function of mean microcrack length at various cycles.
Fig. 18
Fig. 18 (a) Transmittance, (b) reflection data of the IGZO/Glass specimens prepared with different deposition power.
Fig. 19
Fig. 19 Refractive index and extinction coefficient data evaluated for (a) 60-W, (b) 80-W, and (c) 100-W IGZO/Glass specimen.
Fig. 20
Fig. 20 Band gap energy of the three specimens prepared with different deposition power.
Fig. 21
Fig. 21 Deconvolutions of PL intensity for 100 W specimen.

Tables (4)

Tables Icon

Table 1 Details of deposition conditions.

Tables Icon

Table 2 Roughness, mechanical properties, and IR values for three kinds of specimen.

Tables Icon

Table 3 Peak intensities of O 1s and peak intensity ratios of three kinds of specimen.

Tables Icon

Table 4 Intensity and wavelength results of PL decompositions into three Gaussion-like profiles with peaks-1 to 3 for each of the three specimens.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I R I InGa O 3 (ZnO) 3 ((0114)+(0216)+(0015)) I InGa O 3 (ZnO) 3 ((0114)+(0216)+(0015)) + I InGaZn O 4 (0015) .
I R O2 I O2 /( I O1 + I O2 )
α =ln( 1/T )/ t f .
( αhυ ) 2 = A( hυ E g ).

Metrics