Abstract

Long afterglow phosphors of pure- and Eu3+-doped BaZr4(PO4)6 were synthesized by solid state reaction at 1300 °C in air- and CO-atmospheres. The samples were investigated by X-ray diffraction (XRD) structural refinement, photoluminescence (PL), and thermoluminescence (TL) techniques. The emission spectrum shows a broad band peaked at 475 nm from the charge transfer (CT) transitions in O2−-Zr4+. There is an intrinsic trap center associated with Zr4+ activator centers in BaZr4(PO4)6 lattices at about 367 K (0.387 eV), which is independent of the doping or sintering atmosphere. Zr4+ ions act as not only a luminescence center but also a trap center. Eu-doping and sintering the sample in CO-atmospheres could modify the luminescence color and prolong the afterglow time. The thermoluminescence (TL) spectra show that Eu3+ doping induces a high energy trap at 426 K (1.115 eV), while CO-sintering produces the new trap center at around 383 K (0.402 eV). The suggested afterglow luminescence mechanism was discussed on the base of structure characteristics and the trap energies. The traps have appropriate depth for the potential development as a long afterglow phosphor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor

Xuhui Xu, Yuhua Wang, Yu Gong, Wei Zeng, and Yanqin Li
Opt. Express 18(16) 16989-16994 (2010)

Phosphorescence performance of La3GaGe5O16:Tb3+ by enhancing the bridging oxygen vacancies

Shaoan Zhang, Yihua Hu, and He Duan
Opt. Mater. Express 6(6) 1998-2013 (2016)

Influence of co-doping Si ions on persistent luminescence of ZnGa2O4: Cr3+ red phosphors

Zhengfa Hu, Dinghua Ye, Xiujuan Lan, Wei Zhang, Li Luo, and Yinhai Wang
Opt. Mater. Express 6(4) 1329-1338 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
    [Crossref]
  2. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).
  3. J. Trojan-Piegza and E. Zych, “Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres,” J. Phys. Chem. C 114(9), 4215–4220 (2010).
    [Crossref]
  4. H. F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2(4), 371–381 (2012).
    [Crossref]
  5. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  6. J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
    [Crossref]
  7. S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
    [Crossref]
  8. M. Kaneyoshi and E. Nakazawa, “Luminescence of YPO4:Zr and YPO4:Zr,Mn under vacuum ultraviolet excitation,” J. Electrochem. Soc. 152(6), H80–H83 (2005).
    [Crossref]
  9. A. Bril and H. Klasens, “New phosphors for flying-spot cathode-ray tubes,” Philips Res. Rep. 7, 421–431 (1952).
  10. L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).
  11. C. R. Miao and C. C. Torardi, “A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2,” J. Solid State Chem. 155(1), 229–232 (2000).
    [Crossref]
  12. G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
    [Crossref]
  13. L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
    [Crossref]
  14. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express 2(3), 331–340 (2012).
    [Crossref]
  15. G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
    [Crossref]
  16. X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
    [Crossref]
  17. J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).
  18. J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
    [Crossref]
  19. G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
    [Crossref]
  20. R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  21. E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
    [Crossref]
  22. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific Pub. Co. Inc., 1997).

2013 (2)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

2012 (2)

2011 (1)

X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
[Crossref]

2010 (2)

J. Trojan-Piegza and E. Zych, “Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres,” J. Phys. Chem. C 114(9), 4215–4220 (2010).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2008 (1)

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

2007 (1)

L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
[Crossref]

2005 (2)

J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
[Crossref]

M. Kaneyoshi and E. Nakazawa, “Luminescence of YPO4:Zr and YPO4:Zr,Mn under vacuum ultraviolet excitation,” J. Electrochem. Soc. 152(6), H80–H83 (2005).
[Crossref]

2004 (2)

J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).

J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
[Crossref]

2000 (2)

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
[Crossref]

C. R. Miao and C. C. Torardi, “A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2,” J. Solid State Chem. 155(1), 229–232 (2000).
[Crossref]

1999 (1)

L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).

1995 (1)

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

1993 (1)

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

1987 (1)

S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
[Crossref]

1969 (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

1952 (1)

A. Bril and H. Klasens, “New phosphors for flying-spot cathode-ray tubes,” Philips Res. Rep. 7, 421–431 (1952).

Agrawal, D. K.

S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
[Crossref]

Bernardi, G.

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

Blasse, G.

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Bos, A. J. J.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

Brecher, C.

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
[Crossref]

Bril, A.

A. Bril and H. Klasens, “New phosphors for flying-spot cathode-ray tubes,” Philips Res. Rep. 7, 421–431 (1952).

Brito, H. F.

Carvalho, J. M.

Chen, R.

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Chen, W.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

Felinto, M. C. F. C.

Gao, H.

L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
[Crossref]

Glodo, J.

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
[Crossref]

Gong, Y.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

Han, S.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

He, L.

L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
[Crossref]

Hölsä, J.

Hong, G. Y.

L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).

Huang, Y.

X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
[Crossref]

Huntelaar, M. E.

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

IJdo, D. J. W.

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Kaneyoshi, M.

M. Kaneyoshi and E. Nakazawa, “Luminescence of YPO4:Zr and YPO4:Zr,Mn under vacuum ultraviolet excitation,” J. Electrochem. Soc. 152(6), H80–H83 (2005).
[Crossref]

Klasens, H.

A. Bril and H. Klasens, “New phosphors for flying-spot cathode-ray tubes,” Philips Res. Rep. 7, 421–431 (1952).

Laamanen, T.

Lastusaari, M.

Li, G.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

Limaye, S. Y.

S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
[Crossref]

Malkamäki, M.

Malta, O. L.

Mckinstry, H. A.

S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
[Crossref]

Miao, C. R.

C. R. Miao and C. C. Torardi, “A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2,” J. Solid State Chem. 155(1), 229–232 (2000).
[Crossref]

Nakazawa, E.

M. Kaneyoshi and E. Nakazawa, “Luminescence of YPO4:Zr and YPO4:Zr,Mn under vacuum ultraviolet excitation,” J. Electrochem. Soc. 152(6), H80–H83 (2005).
[Crossref]

Niittykoski, J.

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

Nunes, L. A. O.

Plaisier, J. R.

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

Poelman, D.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Rodrigues, L. C. V.

Schipper, W. J.

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Seo, H. J.

X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
[Crossref]

Smet, P. F.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Su, Q.

J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
[Crossref]

J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).

J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
[Crossref]

Sun, X. L.

L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).

Torardi, C. C.

C. R. Miao and C. C. Torardi, “A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2,” J. Solid State Chem. 155(1), 229–232 (2000).
[Crossref]

Trojan-Piegza, J.

J. Trojan-Piegza and E. Zych, “Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres,” J. Phys. Chem. C 114(9), 4215–4220 (2010).
[Crossref]

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Wang, J.

J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
[Crossref]

J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
[Crossref]

J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).

Wang, S.

J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
[Crossref]

J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).

J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
[Crossref]

Wang, X.

X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
[Crossref]

Wang, Y.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
[Crossref]

Zeng, W.

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

Zhang, L.

L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).

Zych, E.

J. Trojan-Piegza and E. Zych, “Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres,” J. Phys. Chem. C 114(9), 4215–4220 (2010).
[Crossref]

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
[Crossref]

Chem. Mater. (1)

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

Chin. Chem. Lett. (1)

L. Zhang, G. Y. Hong, and X. L. Sun, “The luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure,” Chin. Chem. Lett. 10, 799–802 (1999).

J. Alloys Compd. (1)

G. Blasse, G. Bernardi, D. J. W. IJdo, and J. R. Plaisier, “Yellow zirconate luminescence in Ca3ZrSi2O9,” J. Alloys Compd. 217(1), 29–30 (1995).
[Crossref]

J. Am. Ceram. Soc. (1)

S. Y. Limaye, D. K. Agrawal, and H. A. Mckinstry, “Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. 70(10), C232–C236 (1987).
[Crossref]

J. Electrochem. Soc. (2)

M. Kaneyoshi and E. Nakazawa, “Luminescence of YPO4:Zr and YPO4:Zr,Mn under vacuum ultraviolet excitation,” J. Electrochem. Soc. 152(6), H80–H83 (2005).
[Crossref]

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

J. Lumin. (1)

L. He, Y. Wang, and H. Gao, “Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu,” J. Lumin. 126(1), 182–186 (2007).
[Crossref]

J. Phys. Chem. C (1)

J. Trojan-Piegza and E. Zych, “Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres,” J. Phys. Chem. C 114(9), 4215–4220 (2010).
[Crossref]

J. Phys. Chem. Solids (2)

J. Wang, Q. Su, and S. Wang, “Blue and red long lasting phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+,” J. Phys. Chem. Solids 66(7), 1171–1176 (2005).
[Crossref]

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

J. Phys. Condens. Matter (1)

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps,” J. Phys. Condens. Matter 12(8), 1947–1958 (2000).
[Crossref]

J. Rare Earths (1)

J. Wang, S. Wang, and Q. Su, “Luminescence and defect properties of novel bluish-green, phosphor β-Zn3(PO4)2:Zr4+,” J. Rare Earths 22, 83–86 (2004).

J. Solid State Chem. (2)

J. Wang, S. Wang, and Q. Su, “The role of excess Zn2+ ions in improvement of red long lasting phosphorescence (LLP) performance of β-Zn3(PO4)2:Mn phosphor,” J. Solid State Chem. 177(3), 895–900 (2004).
[Crossref]

C. R. Miao and C. C. Torardi, “A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2,” J. Solid State Chem. 155(1), 229–232 (2000).
[Crossref]

Materials (Basel) (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Opt. Mater. Express (2)

Philips Res. Rep. (1)

A. Bril and H. Klasens, “New phosphors for flying-spot cathode-ray tubes,” Philips Res. Rep. 7, 421–431 (1952).

Phys. Rev. B (1)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(045126), 1–11 (2013).

Sens. Actuators B Chem. (1)

X. Wang, Y. Huang, and H. J. Seo, “A new long-lasting phosphorescence phosphors of Zr4+ and Eu3+ co-doped SrMg2(PO4)2,” Sens. Actuators B Chem. 158, 171–175 (2011).
[Crossref]

Solid State Sci. (1)

G. Li, Y. Wang, S. Han, W. Zeng, W. Chen, and Y. Gong, “Phosphorescence material Gd9.33(SiO4)6O2:Sm3+ and effect of oxygen vacancies on its performance, ECS J,” Solid State Sci. 2, R161–R164 (2013).
[Crossref]

Other (1)

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific Pub. Co. Inc., 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a): surrounding of Zr(1)O6 and Zr(2)O6; (b): schematic view along [100]; (c): the structural refinement; (d): SEM picture of BaZr4(PO4)6.
Fig. 2
Fig. 2 The PL spectra of pure BaZr4(PO4)6 (a, b) and the Eu-doped samples (c, d) prepared in different atmospheres.
Fig. 3
Fig. 3 The afterglow decay curves of pure and Eu3+-doped BaZr4(PO4)6 prepared in different atmospheres.
Fig. 4
Fig. 4 The thermoluminsecent spectra of pure and Eu3+-doped BaZr4(PO4)6 prepared in different atmospheres as noted in the figure.
Fig. 5
Fig. 5 The mechanism of afterglow decay of pure and Eu3+-doped BaZr4(PO4)6 prepared in different atmospheres.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E= c δ (k T 2 /δ)
c δ =0.976+7.3( μ g 0.42)

Metrics