Abstract

Hexagonal-phase NaYF4: Yb3+, Er3+ nanoparticles (NPs) have been widely used as the most efficient NIR-to-visible upconversion (UC) luminescent and probe in bioscience. Here, we exploited not only the function of dual-mode emission of β-NaYF4: Yb3+, Er3+ NPs in the near infrared (NIR) and visible regions with single wavelength excitation at 980 nm, but also the function of physiological temperature sensing with the luminescence of Er3+ in the visible region. The structural and optical characteristics of β-NaYF4: Yb3+, Er3+ NPs were obtained using X-ray diffraction (XRD), scanning electron microscopy (SEM),and fluorescence spectral measurements, respectively; the mechanism for the energy transfer has been suggested with emphasis on the optimized Er/Yb concentration for most efficient UC. Due to the UC and down-shifting NIR properties, we achieved the dual-functional nanoparticles with potential application in physiological range temperature sensing and bioimaging simultaneously.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+ @NaYF4:Tm3+/Yb3+core-shell particles

Yanqiu Zhang, Sai Xu, Xiangping Li, Jinsu Zhang, Jiashi Sun, Haiping Xia, Ruinian Hua, and Baojiu Chen
Opt. Mater. Express 8(2) 368-384 (2018)

NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B Mater. Biol. Med. 2(17), 2422–2443 (2014).
    [Crossref]
  2. S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
    [Crossref] [PubMed]
  3. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
    [Crossref] [PubMed]
  4. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  5. V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
    [Crossref] [PubMed]
  6. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    [Crossref] [PubMed]
  7. D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
    [Crossref] [PubMed]
  8. Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
    [Crossref] [PubMed]
  9. R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
    [Crossref] [PubMed]
  10. D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
    [Crossref] [PubMed]
  11. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  12. J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
    [Crossref] [PubMed]
  13. T. Nann, “Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine,” Chem. Commun. (Camb.) 13(13), 1735–1736 (2005).
    [Crossref] [PubMed]
  14. B. Ungun, R. K. Prud’homme, S. J. Budijon, J. Shan, S. F. Lim, Y. Ju, and R. Austin, “Nanofabricated upconversion nanoparticles for photodynamic therapy,” Opt. Express 17(1), 80–86 (2009).
    [Crossref] [PubMed]
  15. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  16. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  17. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  18. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  19. Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
    [Crossref]
  20. R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
    [Crossref]
  21. D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
    [Crossref] [PubMed]
  22. K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
    [Crossref]
  23. D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
    [Crossref] [PubMed]
  24. D. Chen and Y. Wang, “Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials,” Nanoscale 5(11), 4621–4637 (2013).
    [Crossref] [PubMed]
  25. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
    [Crossref] [PubMed]
  26. J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
    [Crossref] [PubMed]
  27. G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
    [Crossref] [PubMed]
  28. T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
    [Crossref] [PubMed]
  29. G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(5), A452–A464 (2014).
    [Crossref] [PubMed]
  30. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
    [Crossref] [PubMed]
  31. D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
    [Crossref] [PubMed]
  32. T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
    [Crossref] [PubMed]
  33. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  34. X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
    [Crossref] [PubMed]
  35. H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
    [Crossref] [PubMed]
  36. V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
    [Crossref]
  37. H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
    [Crossref] [PubMed]
  38. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
    [Crossref] [PubMed]
  39. D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
    [Crossref]
  40. L. Jin, Y. N. Tan, Z. Quan, M. P. Li, and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
    [Crossref] [PubMed]
  41. A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
    [Crossref]
  42. A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
    [Crossref]
  43. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [Crossref]
  44. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
    [Crossref]
  45. D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
    [Crossref] [PubMed]
  46. R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
    [Crossref] [PubMed]

2015 (4)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

2014 (7)

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B Mater. Biol. Med. 2(17), 2422–2443 (2014).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(5), A452–A464 (2014).
[Crossref] [PubMed]

2013 (8)

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
[Crossref] [PubMed]

D. Chen and Y. Wang, “Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials,” Nanoscale 5(11), 4621–4637 (2013).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

2012 (6)

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

L. Jin, Y. N. Tan, Z. Quan, M. P. Li, and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
[Crossref] [PubMed]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

2011 (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2010 (4)

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

2007 (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

2006 (1)

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

2005 (2)

T. Nann, “Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine,” Chem. Commun. (Camb.) 13(13), 1735–1736 (2005).
[Crossref] [PubMed]

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

2004 (2)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[Crossref] [PubMed]

2003 (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

1998 (1)

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Adams, S.

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Antaris, A. L.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Arnaoutakis, G. E.

Austin, R.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Baum, R. P.

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Bitter, K.

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Budijon, S. J.

Cao, W.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Chen, B.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Chen, D.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

D. Chen and Y. Wang, “Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials,” Nanoscale 5(11), 4621–4637 (2013).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Chen, G.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Chen, S.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Chen, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Chen, X.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Chen, Y.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Cheng, K.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Cheng, Z.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Chi, D.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Chi, X. N.

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

Chi, Y.

Cho, M. H.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Dai, H.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Deng, R.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Dey, R.

A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Diao, S.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Ding, M.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Dong, G.

Dong, H.

H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
[Crossref] [PubMed]

Faenza, W.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Fischer, S.

Frangioni, J. V.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Gao, D. L.

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

Gao, W.

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

Gao, X.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Goldschmidt, J. C.

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Guan, B. O.

Guo, H.

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Guo, Q.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Han, Y.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

He, E. J.

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

Hejazi, S.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Hong, G.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Hor, T. S.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Hör, G.

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Hu, Y.

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Huang, F.

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Huang, L.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Huang, P.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Ivaturi, A.

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Jiang, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Jin, L.

Ju, Y.

Kim, B. G.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Kim, E.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Kim, J. S.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Kohl, J.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Krämer, K. W.

Kulesa, A.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Kumar, R.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Kundaliya, D.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Lee, J. K.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Lee, S. S.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Li, M. P.

Li, R.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Li, Z.

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Lim, S. F.

Liu, G.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Liu, L.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Liu, R.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Liu, X.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Liu, X. Y.

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Liu, Z.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Liu, Z. Y.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Lu, H.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lv, C. J.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Ma, E.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

MacDonald, M. A.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Marques-Hueso, J.

Me’ndez-Ramos, J.

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Moghe, P. V.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Moshchalkov, V. V.

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Muhammad, I. N.

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Mulvaney, P.

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[Crossref] [PubMed]

Naczynski, D. J.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Nann, T.

T. Nann, “Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine,” Chem. Commun. (Camb.) 13(13), 1735–1736 (2005).
[Crossref] [PubMed]

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Pandey, A.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Pansare, V.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Papaefthymiou, G. C.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Park, S. B.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Prud’homme, R. K.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

B. Ungun, R. K. Prud’homme, S. J. Budijon, J. Shan, S. F. Lim, Y. Ju, and R. Austin, “Nanofabricated upconversion nanoparticles for photodynamic therapy,” Opt. Express 17(1), 80–86 (2009).
[Crossref] [PubMed]

Qian, H.

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Qiao, Y.

Qin, W. P.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Qiu, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref] [PubMed]

Quan, Z.

Rai, V. K.

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Richards, B. S.

Riman, R. E.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Robinson, J. T.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Rodri’quez, V. D.

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Roth, C. M.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Selvan, S. T.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Shan, J.

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shao, Q.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Shen, J.

J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
[Crossref] [PubMed]

Sohn, B. H.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Soni, A. K.

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Stuckensen, T.

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Sun, L. D.

H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
[Crossref] [PubMed]

J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
[Crossref] [PubMed]

Tan, D.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Tan, M. C.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Tan, Y. N.

Teng, X.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Tikhomirov, V. K.

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Tu, D.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Ungun, B.

Wall, B.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Wang, C.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Wang, F.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Wang, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Wang, P.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Wang, Q.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Wang, R.

R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B Mater. Biol. Med. 2(17), 2422–2443 (2014).
[Crossref]

Wang, Y.

D. Chen and Y. Wang, “Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials,” Nanoscale 5(11), 4621–4637 (2013).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Wei, R. F.

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

Wei, Y. L.

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Wu, E.

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Xing, B.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Xu, C.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Yan, C. H.

H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
[Crossref] [PubMed]

J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
[Crossref] [PubMed]

Yanes, A. C.

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Yang, A.

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

Yi, D. K.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Ying, J. Y.

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

Yoon, T. J.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Yu, K. N.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

Yuan, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Yun, S. H.

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Zeng, H.

Zevon, M.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Zhang, F.

R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B Mater. Biol. Med. 2(17), 2422–2443 (2014).
[Crossref]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, P.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Zhang, X. Y.

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

Zhang, Y.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Zhang, Z.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zheng, H. R.

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

Zheng, K. Z.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Zheng, L.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zheng, S.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Zheng, W.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Zhong, J.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhu, H.

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

ACS Nano (1)

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Angew. Chem. Int. Ed. Engl. (4)

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[Crossref] [PubMed]

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818–9821 (2012).
[Crossref] [PubMed]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 51(13), 3125–3129 (2012).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Appl. Phys. Express (1)

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Chem. Commun. (Camb.) (1)

T. Nann, “Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine,” Chem. Commun. (Camb.) 13(13), 1735–1736 (2005).
[Crossref] [PubMed]

Chem. Mater. (1)

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Dalton Trans. (3)

J. Shen, L. D. Sun, and C. H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 24(42), 5687–5697 (2008).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

Eur. J. Nucl. Med. (1)

S. Adams, R. P. Baum, T. Stuckensen, K. Bitter, and G. Hör, “Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer,” Eur. J. Nucl. Med. 25(9), 1255–1260 (1998).
[Crossref] [PubMed]

Inorg. Chem. (1)

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, and H. Guo, “Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass–ceramics,” J. Alloys Compd. 578, 385–388 (2013).
[Crossref]

D. L. Gao, X. Y. Zhang, H. R. Zheng, W. Gao, and E. J. He, “Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554(25), 395–399 (2013).
[Crossref]

J. Am. Chem. Soc. (3)

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005).
[Crossref] [PubMed]

D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, and Y. Wang, “Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping,” J. Am. Chem. Soc. 132(29), 9976–9978 (2010).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B Mater. Biol. Med. 2(17), 2422–2443 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Nanoscale (4)

D. Chen and Y. Wang, “Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials,” Nanoscale 5(11), 4621–4637 (2013).
[Crossref] [PubMed]

H. Dong, L. D. Sun, and C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions,” Nanoscale 5(13), 5703–5714 (2013).
[Crossref] [PubMed]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, and X. Chen, “Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF₄ nanocrystals,” Nanoscale 4(15), 4485–4491 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

H. Guo, Z. Li, H. Qian, Y. Hu, and I. N. Muhammad, “Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity,” Nanotechnology 21(12), 125602 (2010).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Commun. (1)

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Opt. Express (4)

RSC Advances (1)

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

Sens. Actuators B Chem. (2)

A. K. Soni, R. Dey, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Small (1)

T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, and S. B. Park, “Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials,” Small 2(2), 209–215 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

V. D. Rodrı’quez, V. K. Tikhomirov, J. Me’ndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[Crossref]

Other (1)

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a-e) SEM images of β-NaYF4: Yb3+, Er3+, the concentration of Er3+ ion in the codoped NaYF4 is 0.5 mol.%, 1 mol.%, 2 mol.%, 3 mol.%, 10 mol.%, respectively. The upper right inset is the corresponding particle size distribution. (f) The X-ray diffraction patterns of β-NaYF4: Yb3+, Er3+; inset is the partially enlarged XRD pattern showing the shift of peaks.
Fig. 2
Fig. 2 (a) The UC emissions in β-NaYF4: Yb3+-Er3+ crystals with different concentration of Er3+ ions; (b)Log–log plot of UC emission intensity in β-NaYF4: 3 mol.% Er3+-20 mol.% Yb3+ versus pump power ; (c) Calculated peak area ratio of the red region (4F9/24I15/2) to the green region (2H11/2, 4S3/24I15/2); (d)Schematic energy level diagram for Er3+-Yb3+ energy transfer system under 980 nm excitation; (e) The SWIR emissions in β-NaYF4: Yb3+, Er3+ crystals with different concentration of Er3+ ions; (f) Log–log plot of DC emission intensity in β-NaYF4: 3 mol.% Er3+-20 mol.% Yb3+ versus pump power.
Fig. 3
Fig. 3 (a) Upconversion emission spectra obtained at six different cuvette temperatures (λexc = 980 nm); (b) The monolog plot of the FIR (I521/I541) as a function of inverse absolute temperature; (c) The sensitivity as a function of the absolute temperature; (d) SEM image of the water-dispersible β-NaYF4: 3 mol.% Er3+, 20 mol.% Yb3+ @ SiO2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I UC ( P pump ) n
( I 521 I 541 )=Cexp( ΔE KT )
S=( 1 FIR )| d( FIR ) dT |

Metrics