Abstract

The SiO2: Tb, Yb thin films (or inverse opals) including Ag nanoparticles (NPs) were successfully synthesized by using the sol-gel method. The influence of Ag species on the photoluminescence (PL) property of SiO2: Tb, Yb, Ag material was investigated. Under 250 nm excitation, the visible-infrared (NIR) quantum cutting (QC) emission from Tb3+ and Yb3+ are greatly enhanced with formation of Ag NPs in SiO2 thin films. Meanwhile, an interesting broad excitation band which may be attributed to Ag nanoclusters of (Ag4)2+ tetramers is obtained by monitoring 977 nm emission of Yb3+. It is supposed that the (Ag4)2+ can pass energy to Yb3+ directly, where the energy transfer (ET) between (Ag4)2+ to the Yb3+ is suggested in a QC process. Moreover, we demonstrated that the Tb ions are required for the formation of the (Ag4)2+ in SiO2 glass hosts. In the SiO2: Tb, Yb, Ag inverse opals thin films, the QC emission intensity of Yb3+ is considerably improved by inhibiting the blue and green emission of Tb3+. The results demonstrated that the ET between Tb3+ and Yb3+ is enhanced. In addition, we not only observed the existence of (Ag4)2+, but also obtained ET from silver aggregates of (Ag2)+ to Tb3+ in the inverse opals under 377 nm excitation. The mechanism of visible-NIR QC emission of the SiO2: Tb, Yb, Ag films with inverse opal structure are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Senyuan Xu, Lin Lin, Zhezhe Wang, Zhuohong Feng, and Zhiqiang Zheng
Opt. Lett. 40(11) 2630-2633 (2015)

Efficient near-infrared downconversion and energy transfer mechanism in Tb4+-Yb3+ co-doped NaYF4 nanoparticles

Biao Zheng, Lin Lin, Senyuan Xu, Zhezhe Wang, Zhuohong Feng, and Zhiqiang Zheng
Opt. Mater. Express 6(9) 2769-2775 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
    [Crossref]
  2. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
    [Crossref]
  3. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
    [Crossref]
  4. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [Crossref]
  5. W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
    [Crossref]
  6. P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
    [Crossref]
  7. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
    [Crossref]
  8. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
    [Crossref]
  9. J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
    [Crossref]
  10. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
    [Crossref]
  11. X. Y. Huang and Q. Y. Zhang, “Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films,” J. Appl. Phys. 105(5), 053521 (2009).
    [Crossref]
  12. O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
    [Crossref]
  13. L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
    [Crossref]
  14. P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
    [Crossref]
  15. Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
    [Crossref]
  16. J. Li, R. Wei, X. Liu, and H. Guo, “Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses,” Opt. Express 20(9), 10122–10127 (2012).
    [Crossref] [PubMed]
  17. R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
    [Crossref]
  18. L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
    [Crossref]
  19. R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
    [Crossref]
  20. H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
    [Crossref]
  21. G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
    [Crossref]
  22. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
    [Crossref]
  23. A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).
  24. J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
    [Crossref] [PubMed]
  25. H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
    [Crossref]
  26. Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, and J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt. 50(3), 287–290 (2011).
    [Crossref] [PubMed]
  27. Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
    [Crossref]
  28. D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
    [Crossref]
  29. Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).
  30. S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
    [Crossref]
  31. S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
    [Crossref]
  32. C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
    [Crossref] [PubMed]
  33. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
    [Crossref]
  34. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [Crossref] [PubMed]
  35. F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
    [Crossref]

2015 (1)

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

2014 (4)

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

2012 (6)

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

J. Li, R. Wei, X. Liu, and H. Guo, “Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses,” Opt. Express 20(9), 10122–10127 (2012).
[Crossref] [PubMed]

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

2011 (4)

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, and J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt. 50(3), 287–290 (2011).
[Crossref] [PubMed]

2010 (3)

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

2009 (3)

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

X. Y. Huang and Q. Y. Zhang, “Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films,” J. Appl. Phys. 105(5), 053521 (2009).
[Crossref]

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

2008 (2)

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

2007 (3)

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

2005 (3)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

2003 (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

2000 (1)

W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
[Crossref]

1985 (1)

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

Auzel, F.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

Bednarkiewicz, A.

W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
[Crossref]

Benayad, A.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Braud, A.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Camy, P.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Chen, D.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Chen, H. H.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Chen, J. D.

H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

Chiasera, A.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Chibotaru, L. F.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Cruz, P. A. S.

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

Cui, S.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Cuong, N. T.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

de Araújo, C. B.

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

De Sa, G. F.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

den Hertog, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Deng, Y. G.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Denisenko, G. A.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Deren, P.

W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
[Crossref]

Doualan, J. L.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Eerden, J. V.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Eichelbaum, M.

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Fan, X. P.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Fanb, J.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Ferrari, M.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Gao, J. Y.

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Gudel, H. U.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Guo, H.

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

J. Li, R. Wei, X. Liu, and H. Guo, “Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses,” Opt. Express 20(9), 10122–10127 (2012).
[Crossref] [PubMed]

H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

Han, L. X.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Haoa, Y.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Hu, X.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Huang, P.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Huang, X. Y.

X. Y. Huang and Q. Y. Zhang, “Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films,” J. Appl. Phys. 105(5), 053521 (2009).
[Crossref]

Ji, X. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

Jiang, Z. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

Jivanescu, M.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Kassab, L. R. P.

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

Kirilenko, D.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

Kox, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Kramer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Kuznetsov, A. S.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Lai, S. F.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

Li, J.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

J. Li, R. Wei, X. Liu, and H. Guo, “Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses,” Opt. Express 20(9), 10122–10127 (2012).
[Crossref] [PubMed]

Li, J. H.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Li, J. J.

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

Li, L. J.

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

Li, X. J.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Liao, J. Y.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

Liu, J.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Liu, X.

Liub, E.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Luo, H.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Ma, R. H.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Malashkevich, G. E.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Malta, O. L.

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

Martucci, A.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Mattarelli, M.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Mazzoldi, P.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Meijerink, A.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Menard, V.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Miaoa, H.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Moncorge, R.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Montagna, M.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Morgan, S. H.

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

Moshchalkov, V. V.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Mu, R.

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

Naranjo, L. P.

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

Nguyen, M. T.

Pan, Y. X.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

Pan, Z.

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Pelli, S.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Peng, Y. J.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Piasecki, A.

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

Piasecki, P.

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

Plyushch, B. V.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Portales, H.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Qian, J. Y.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Qiao, X. S.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Qiu, J.

Qiu, J. B.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Rademann, K.

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Righini, G. C.

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

Rodríguez, V. D.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Santa-Cruz, P. A.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

Semchenko, A. V.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Serrano, D.

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

Shao, B.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

Shi, Y. F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Sidskii, V. V.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Song, Z.

Song, Z. G.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Stesmans, A.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

Strek, W.

W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
[Crossref]

Stupak, A. P.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Sukhodola, A. A.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Sukhodolov, A. V.

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

Suna, Q.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Tikhomirov, V. K.

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Van Tendeloo, G.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

van Wijngaarden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Velázquez, J. J.

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20(12), 13582–13591 (2012).
[Crossref] [PubMed]

Vergeer, P.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Vlugt, T.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Wang, F.

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

Wang, R. F.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Wang, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Wei, R.

Wei, R. F.

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Wu, H. J.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Xu, B.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Xu, X. H.

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

Yan, D.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Yang, C. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

Yang, X. X.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Yang, Y.

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Yang, Z.

Yang, Z. W.

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Yin, Z.

Yin, Z. Y.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Yu, X.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Yu, X. B.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Yu, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Yuan, J. L.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Zeng, X. Y.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Zhana, S.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Zhang, F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhang, H.

H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

Zhang, K.

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

Zhang, Q. Y.

X. Y. Huang and Q. Y. Zhang, “Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films,” J. Appl. Phys. 105(5), 053521 (2009).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

Zhang, R. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhang, Z. J.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Zhanga, D.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Zhanga, G.

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

Zhao, D. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhao, J. T.

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

Zhou, D.

Zhou, D. C.

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Zhu, J. L.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Zhu, K.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, and J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt. 50(3), 287–290 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90(6), 061914 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz, and L. R. P. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett. 87(24), 241914 (2005).
[Crossref]

Ceram. Int. (1)

Q. Suna, S. Zhana, E. Liub, H. Miaoa, Y. Haoa, G. Zhanga, D. Zhanga, J. Fanb, and X. Hu, “The preparation and study of fluorescence properties of Y2O3:Tb3+, Yb3+ doped with silver nanoparticles,” Ceram. Int. 41(10), 12644–12650 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

R. F. Wei, J. J. Li, J. Y. Gao, and H. Guo, “Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glass,” J. Am. Ceram. Soc. 95(11), 3380–3382 (2012).
[Crossref]

J. Appl. Phys. (3)

X. Y. Huang and Q. Y. Zhang, “Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films,” J. Appl. Phys. 105(5), 053521 (2009).
[Crossref]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, “Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells,” J. Appl. Phys. 99, 121110 (2011).

J. Fluoresc. (1)

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[Crossref] [PubMed]

J. Lumin. (3)

R. H. Ma, J. Y. Qian, S. Cui, X. S. Qiao, F. Wang, and X. P. Fan, “Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass,” J. Lumin. 152, 222–225 (2014).
[Crossref]

W. Strek, P. Deren, and A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions,” J. Lumin. 87–89, 999–1001 (2000).
[Crossref]

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[Crossref]

J. Mater. Chem. (2)

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

J. Nanophotonics (1)

P. Piasecki, A. Piasecki, Z. Pan, R. Mu, and S. H. Morgan, “Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass,” J. Nanophotonics 4(1), 43522 (2010).
[Crossref]

J. Non-Cryst. Solids (3)

L. J. Li, Y. Yang, D. C. Zhou, X. H. Xu, and J. B. Qiu, “The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange,” J. Non-Cryst. Solids 385, 95–99 (2014).
[Crossref]

H. Portales, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Martucci, P. Mazzoldi, S. Pelli, and G. C. Righini, “Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses,” J. Non-Cryst. Solids 351(21-23), 1738–1742 (2005).
[Crossref]

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Preparation and photoluminescence property of SiO2: Tb3+ three dimensionally ordered macroporous composites including Ag nanoparticles,” J. Non-Cryst. Solids 405, 176–179 (2014).
[Crossref]

J. Phys. Chem. C (1)

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, “Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor,” J. Phys. D Appl. Phys. 41(10), 105406 (2008).
[Crossref]

J. Rare Earths (1)

H. Zhang, J. D. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

Mater. Chem. Phys. (1)

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Opt. Express (2)

Opt. Mater. (2)

D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, “Ytterbium sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33(7), 1028–1031 (2011).
[Crossref]

A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velázquez, V. D. Rodríguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing,” Opt. Mater. 34(4), 616–621 (2012).

Phys. Chem. Solids (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Phys. Rev. B (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. V. Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Phys. Solid State (1)

G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidskiĭ, and G. A. Denisenko, “Influence of silver on the Sm3+ luminescence in “Aerosil” silica glasses,” Phys. Solid State 50(8), 1464–1472 (2008).
[Crossref]

RSC Advances (1)

S. F. Lai, Z. W. Yang, J. Y. Liao, J. Li, B. Shao, J. B. Qiu, and Z. G. Song, “Investigation on existing states and photoluminescence property of silver in the SiO2 three-dimensionally ordered macroporous materials,” RSC Advances 4(63), 33607–33613 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) excitation spectra by monitoring the Tb3+: 5D47F5 emission (543 nm), and the Yb3+: 2F5/27F7/2 emission (977 nm) of SiO2: 1% Tb3+, 4% Yb3+ thin films, and (b) visible-NIR emission spectrum under 250 nm excitation of SiO2: 1% Tb3+, x% Yb3+ thin films.
Fig. 2
Fig. 2 The luminescence decay curves of Tb3+ at 543 nm with different Yb3+ concentrations excited at 250 nm of SiO2: 1% Tb3+, x% Yb3+ thin films.
Fig. 3
Fig. 3 The absorption spectra of SiO2: 1% Tb3+, 4% Yb3+ thin films with various Ag concentrations.
Fig. 4
Fig. 4 The TEM image of SiO2: 1% Tb3+, 4% Yb3+ thin films with 0.3 mol% Ag (a), (b), (c), and (d).
Fig. 5
Fig. 5 Visible and NIR emission spectrum under 250 nm excitation of SiO2: 1% Tb3+, 4% Yb3+ thin films with various Ag concentrations.
Fig. 6
Fig. 6 The luminescence lifetimes of the 543 nm emission of Tb3+ (a) and the 977 nm emission of Yb3+ (b) excited at 250 nm.
Fig. 7
Fig. 7 The excitation spectrum of SiO2: 1% Tb3+, 4% Yb3+ thin films with various Ag concentrations by monitoring both the 543 nm emission (a) and the 977 nm emission (b), respectively.
Fig. 8
Fig. 8 The visible emission spectrum excited at 330 nm of SiO2: 1% Tb3+, 4% Yb3+ thin films with various Ag concentrations (a), Inset shows the excitation spectrum of SiO2: 1% Tb, 4% Yb, 0.3% by monitoring the 474 nm emission. The NIR emission spectrum of SiO2: 1% Tb, 4% Yb, 0.3% Ag thin film under various excitation (b).
Fig. 9
Fig. 9 The visible-NIR emission spectrum excited at 250 nm of SiO2: 4% Yb3+,0.3% Ag thin film (a), and the excitation spectra by monitoring both 395 nm emission and 977 nm emission of SiO2: 4% Yb3+,0.3% Ag thin film (b).
Fig. 10
Fig. 10 SEM image of the IPC-485-Ag (a); the TEM image of the IPC-485-Ag (b); the EDS of the IPC-485-Ag (c); the absorption spectra of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag.
Fig. 11
Fig. 11 Visible emission spectrum of (a) the IPC-485-Ag and IPC-663-Ag, and (b) the IPC-540-Ag and IPC-663-Ag; the QC emission spectra of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag under 251nm excitation.
Fig. 12
Fig. 12 The excitation spectrum of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag by monitoring both the 543 nm emission (a) and the 976 nm emission (b), respectively.
Fig. 13
Fig. 13 Visible emission spectrum of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag excited at 377 nm (a); the NIR emission spectrum of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag under various excitation (b).
Fig. 14
Fig. 14 The luminescence lifetimes of the 543 nm emission of Tb3+ of the IPC-485-Ag, IPC-540-Ag and IPC-663-Ag under 251 nm excitation (a); the energy level diagrams of SiO2 matrix, silver aggregates of (Ag2)+, Tb3+, Yb3+ ions and the QC emission mechanism (b).

Metrics