Abstract

Ga2O3:Cr3+, In3+ phosphors, synthesized via a high temperature solid state reaction, exhibit photocatalytic activity and persistent luminescence. With substituting In3+ for Ga3+ in Ga2O3:Cr3+, the duration of near-infrared (NIR) persistent luminescence was prolonged obviously at room temperature under 254 nm ultraviolet (UV) excitation and the photocatalytic activity was highly improved. The emission and excitation spectra indicated that In3+ doping has no obvious effect on peak positions of Ga2O3:Cr3+. The thermoluminescence (TL) curves showed that a new suitable trap was introduced into Ga2O3:Cr3+ by In3+ doping. It was considered that photocatalytic activity and persistent luminescence properties are highly associated. What’s more, the new trap plays an important role for capturing photo-generated electrons or holes, which is highly responsible for the high separation of photo-generated electron-hole pairs and could improve the persistent luminescence and photocatalytic properties of Ga2O3:Cr3+ effectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photostimulation induced persistent luminescence in Y3Al2Ga3O12:Cr3+

Yumiko Katayama, Bruno Viana, Didier Gourier, Jian Xu, and Setsuhisa Tanabe
Opt. Mater. Express 6(4) 1405-1413 (2016)

Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite

Yumiko Katayama, Hiroaki Kobayashi, Jumpei Ueda, Bruno Viana, and Setsuhisa Tanabe
Opt. Mater. Express 6(5) 1500-1505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
    [Crossref] [PubMed]
  2. L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
    [Crossref]
  3. T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
    [Crossref]
  4. Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
    [Crossref]
  5. T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
    [Crossref]
  6. D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
    [Crossref]
  7. Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
    [Crossref]
  8. Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
    [Crossref]
  9. G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
    [Crossref]
  10. S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
    [Crossref]
  11. E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
    [Crossref]
  12. X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
    [Crossref] [PubMed]
  13. M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
    [Crossref] [PubMed]
  14. L. S. Forster, “The photophysics of chromium(III) complexes,” Chem. Rev. 90(2), 331–353 (1990).
    [Crossref]
  15. E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).
  16. P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
    [Crossref]
  17. K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
    [Crossref]
  18. Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconductingminerals,” Am. Mineral. 85(3-4), 543–556 (2000).
    [Crossref]
  19. B. Zhao and P. Zhang, “Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst,” Catal. Commun. 10(8), 1184–1187 (2009).
    [Crossref]
  20. H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).
  21. X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
    [Crossref]
  22. H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
    [Crossref]
  23. F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
    [Crossref] [PubMed]
  24. E. S. Elmolla and M. Chaudhuri, “Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process,” J. Hazard. Mater. 173(1-3), 445–449 (2010).
    [Crossref] [PubMed]
  25. G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
    [Crossref] [PubMed]
  26. S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
    [Crossref]
  27. Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
    [PubMed]
  28. M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
    [Crossref]
  29. H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
    [Crossref]
  30. Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
    [Crossref]
  31. L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
    [Crossref]
  32. R. A. Condrate and L. S. Forster, “2E-4A2 Transition in Cr3+:K3Co(CN)6 Crystals,” J. Chem. Phys. 48(4), 1514–1517 (1968).
    [Crossref]
  33. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  34. Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
    [Crossref]
  35. S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
    [Crossref] [PubMed]
  36. Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
    [Crossref]
  37. P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17(10), 1123–1127 (2002).
    [Crossref]
  38. P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
    [Crossref]
  39. R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  40. A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
    [Crossref]
  41. W. Gordy and W. J. O. Thomas, “Electronegativities of the elements,” J. Chem. Phys. 24(2), 439–443 (1956).
    [Crossref]
  42. X. M. Sun and Y. D. Li, “Ga2O3 and GaN semiconductor hollow spheres,” Angew. Chem. Int, Edit. 43, 3827–3831 (2004).
  43. H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
    [Crossref]

2015 (4)

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

2014 (3)

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

2013 (2)

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

2012 (3)

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

2011 (4)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

2010 (1)

E. S. Elmolla and M. Chaudhuri, “Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process,” J. Hazard. Mater. 173(1-3), 445–449 (2010).
[Crossref] [PubMed]

2009 (1)

B. Zhao and P. Zhang, “Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst,” Catal. Commun. 10(8), 1184–1187 (2009).
[Crossref]

2008 (5)

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

2007 (4)

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

2004 (2)

T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
[Crossref]

D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
[Crossref]

2003 (2)

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

2002 (1)

P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17(10), 1123–1127 (2002).
[Crossref]

2001 (1)

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

2000 (2)

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconductingminerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

1998 (1)

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

1997 (1)

S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
[Crossref] [PubMed]

1994 (1)

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

1990 (1)

L. S. Forster, “The photophysics of chromium(III) complexes,” Chem. Rev. 90(2), 331–353 (1990).
[Crossref]

1969 (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

1968 (1)

R. A. Condrate and L. S. Forster, “2E-4A2 Transition in Cr3+:K3Co(CN)6 Crystals,” J. Chem. Phys. 48(4), 1514–1517 (1968).
[Crossref]

1956 (1)

W. Gordy and W. J. O. Thomas, “Electronegativities of the elements,” J. Chem. Phys. 24(2), 439–443 (1956).
[Crossref]

Aguinaco, A.

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

Ahmmad, B.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Al-Ghamdi, A. A.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Alshahrie, A.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Amutha, R.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Arai, N.

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Avadhani, G.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Bando, Y.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

Beltrán, F. J.

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

Binet, L.

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Carew, T. J.

S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
[Crossref] [PubMed]

Chang, S. H. G.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Chaudhuri, M.

E. S. Elmolla and M. Chaudhuri, “Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process,” J. Hazard. Mater. 173(1-3), 445–449 (2010).
[Crossref] [PubMed]

Chen, H.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Chen, Q. M.

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Chen, R.

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Cheng, F. Y.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Cheng, Y. S.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Chou, L. J.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

Condrate, R. A.

R. A. Condrate and L. S. Forster, “2E-4A2 Transition in Cr3+:K3Co(CN)6 Crystals,” J. Chem. Phys. 48(4), 1514–1517 (1968).
[Crossref]

Cui, J. S.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Ding, Z.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Dong, G. P.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Dong, S. Y.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Du, Y. Z.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Duan, X. C.

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

Elmolla, E. S.

E. S. Elmolla and M. Chaudhuri, “Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process,” J. Hazard. Mater. 173(1-3), 445–449 (2010).
[Crossref] [PubMed]

Fang, X.

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

Fang, X. S.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Feng, G. F.

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Ferro-García, M.

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

Fischer, T. M.

S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
[Crossref] [PubMed]

Fisher, S. A.

S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
[Crossref] [PubMed]

Forster, L. S.

L. S. Forster, “The photophysics of chromium(III) complexes,” Chem. Rev. 90(2), 331–353 (1990).
[Crossref]

R. A. Condrate and L. S. Forster, “2E-4A2 Transition in Cr3+:K3Co(CN)6 Crystals,” J. Chem. Phys. 48(4), 1514–1517 (1968).
[Crossref]

Fu, X.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Fujita, S.

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Galatsis, K.

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Gao, N.

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Garcia, J. A.

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

García-Araya, J. F.

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

Girija, K.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Golberg, D.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

González-Calbet, J. M.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Gordy, W.

W. Gordy and W. J. O. Thomas, “Electronegativities of the elements,” J. Chem. Phys. 24(2), 439–443 (1956).
[Crossref]

Gourier, D.

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Gu, Z. J.

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

Han, T. P. J.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

Henderson, B.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

Hou, Q. J.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Hou, Y.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Hsieh, C. H.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

Hu, L. F.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Hu, W. R.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Hu, Z. F.

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

Huang, H. J.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Imamura, H.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
[Crossref]

Inoue, M.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Inui, T.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Ishii, Y.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Jazmati, A. K.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Jiang, B.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Jiang, N.

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Jin, Y.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Kalantar-zadeh, K.

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Kaminskii, A. A.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

Karali, T.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Kato, J. I.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Kera, Y.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Kohno, M.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Kominami, H.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Kuroda, Y.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Lakshmikumar, S. T.

P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17(10), 1123–1127 (2002).
[Crossref]

Li, D. R.

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

Li, H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Li, H. B.

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

Li, L.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Li, Y.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Li, Y. H.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Li, Y. K.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Li, Y. X.

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Li, Y. Y.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Li, Z.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Liang, D. W.

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

Liao, M. Y.

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

Lin, G. R.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

Lin, Y. H.

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

Liu, G. C.

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

Liu, H.

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

Liu, J. Q.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Liu, S. X.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

López, A. D.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

Ma, Z. J.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Macfarlane, P. I.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

Maghrabi, M.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Mangalaraj, D.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Matsuda, Y.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

Mendez, B.

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

Méndez, B.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Murakami, S. Y.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Muruganandham, M.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Nakagawa, T.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

Nogales, E.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

Ohira, S.

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Ohtani, B.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Oropesa, A.

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

Oshima, T.

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Pan, H. F.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Pan, Z. W.

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

Peche, A.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Pei, H. Y.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Peng, M. Y.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Piqueras, J.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

Ponpandian, N.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Prados-Joya, G.

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

Qiu, J. R.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Ramírez-Castellanos, J.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Raymond, S. G.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Rivera-Utrilla, J.

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

Sakata, Y.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
[Crossref]

Sánchez-Polo, M.

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

Schoonen, M. A. A.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconductingminerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Shang-guan, W. F.

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

Shanmugam, V.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Sharafudeen, K.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Sillanpää, M. E. T.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Singh, P. K.

P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17(10), 1123–1127 (2002).
[Crossref]

Situ, J. Q.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Su, C. H.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Sun, J. H.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Sun, J. Y.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Suri, R. P. S.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Suzuki, N.

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Tang, Z. L.

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Teramura, K.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

Teraoka, Y.

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

Thirumalairajan, S.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Thomas, W. J. O.

W. Gordy and W. J. O. Thomas, “Electronegativities of the elements,” J. Chem. Phys. 24(2), 439–443 (1956).
[Crossref]

Townsend, P. D.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Trinchi, A.

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Tsai, M. F.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Utrilla, A. D.

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Viswanathan, C.

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Wageh, S.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Wahed, M. S. M. A.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Wang, D.

D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
[Crossref]

Wang, X.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Wang, X. S.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Wang, Y. H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

Wlodarski, W.

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Wu, B. T.

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Wu, J. J.

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

Wu, L.

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

Xiao, H. D.

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Xu, K.

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

Xu, S. Q.

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Xu, X. J.

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Xu, Y.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconductingminerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Yamamoto, T.

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Yanagida, T.

T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
[Crossref]

Yang, B.

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Yasunaga, R.

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

Ye, J.

D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
[Crossref]

Yeh, C. S.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Ying, X. Y.

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Yu, C. F.

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Yuan, J.

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

Zhang, F.

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Zhang, P.

B. Zhao and P. Zhang, “Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst,” Catal. Commun. 10(8), 1184–1187 (2009).
[Crossref]

Zhang, Z. T.

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Zhao, B.

B. Zhao and P. Zhang, “Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst,” Catal. Commun. 10(8), 1184–1187 (2009).
[Crossref]

Zhao, H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

Zhou, S. F.

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Zou, Z.

D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
[Crossref]

ACS Nano (1)

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Acta Biomater. (1)

X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, and Y. Z. Du, “β-Ga2O3:Cr3+ nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously,” Acta Biomater. 22, 164–172 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. J. Xu, L. F. Hu, N. Gao, S. X. Liu, S. Wageh, A. A. Al-Ghamdi, A. Alshahrie, and X. S. Fang, “Controlled growth of ZnS nanoparticles to ZnS-CdS nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater. 25(3), 445–454 (2015).
[Crossref]

Am. Mineral. (1)

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconductingminerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Appl. Catal. B (1)

S. Y. Dong, J. Y. Sun, Y. K. Li, C. F. Yu, Y. H. Li, and J. H. Sun, “ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole,” Appl. Catal. B 144, 386–393 (2014).
[Crossref]

Appl. Phys. Lett. (1)

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 9, 133108 (2007).

Catal. Commun. (1)

B. Zhao and P. Zhang, “Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst,” Catal. Commun. 10(8), 1184–1187 (2009).
[Crossref]

Catal. Today (1)

H. Kominami, J. I. Kato, S. Y. Murakami, Y. Ishii, M. Kohno, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, and B. Ohtani, “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catal. Today 84(3-4), 181–189 (2003).
[Crossref]

Chem. Lett. (1)

T. Yanagida, Y. Sakata, and H. Imamura, “Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO,” Chem. Lett. 33(6), 726–727 (2004).
[Crossref]

Chem. Phys. Lett. (1)

D. Wang, Z. Zou, and J. Ye, “A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation,” Chem. Phys. Lett. 384(1-3), 139–143 (2004).
[Crossref]

Chem. Rev. (1)

L. S. Forster, “The photophysics of chromium(III) complexes,” Chem. Rev. 90(2), 331–353 (1990).
[Crossref]

ChemSusChem (1)

Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura, and K. Teramura, “Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O,” ChemSusChem 4(2), 181–184 (2011).
[PubMed]

J. Appl. Phys. (1)

E. Nogales, J. A. Garcia, B. Mendez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101(3), 033517 (2007).
[Crossref]

J. Catal. (1)

Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, “Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air,” J. Catal. 250(1), 12–18 (2007).
[Crossref]

J. Chem. Phys. (2)

R. A. Condrate and L. S. Forster, “2E-4A2 Transition in Cr3+:K3Co(CN)6 Crystals,” J. Chem. Phys. 48(4), 1514–1517 (1968).
[Crossref]

W. Gordy and W. J. O. Thomas, “Electronegativities of the elements,” J. Chem. Phys. 24(2), 439–443 (1956).
[Crossref]

J. Electrochem. Soc. (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

J. Hazard. Mater. (1)

E. S. Elmolla and M. Chaudhuri, “Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process,” J. Hazard. Mater. 173(1-3), 445–449 (2010).
[Crossref] [PubMed]

J. Lumin. (1)

Y. Y. Lu, F. Liu, Z. J. Gu, and Z. W. Pan, “Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131(12), 2784–2787 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Li, S. F. Zhou, Y. Y. Li, K. Sharafudeen, Z. J. Ma, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

J. Phys. Chem. C (4)

M. Muruganandham, R. Amutha, M. S. M. A. Wahed, B. Ahmmad, Y. Kuroda, R. P. S. Suri, J. J. Wu, and M. E. T. Sillanpää, “Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity,” J. Phys. Chem. C 116(1), 44–53 (2012).
[Crossref]

S. F. Zhou, G. F. Feng, B. T. Wu, N. Jiang, S. Q. Xu, and J. R. Qiu, “Intense Infrared Luminescence in Transparent Glass-Ceramics Containing β-Ga2O3:Ni2+ Nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

A. D. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

H. Liu, J. Yuan, W. F. Shang-guan, and Y. Teraoka, “Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting,” J. Phys. Chem. C 112(23), 8521–8523 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

J. Phys. Condens. Matter (1)

P. D. Townsend, A. K. Jazmati, T. Karali, M. Maghrabi, S. G. Raymond, and B. Yang, “Rare-earth-size effects on thermoluminescence and second-harmonic generation,” J. Phys. Condens. Matter 13(10), 2211–2224 (2001).
[Crossref]

Mater. Chem. Phys. (2)

G. C. Liu, X. C. Duan, H. B. Li, and D. W. Liang, “Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods,” Mater. Chem. Phys. 110(2-3), 206–211 (2008).
[Crossref]

Y. H. Lin, Z. T. Zhang, F. Zhang, Z. L. Tang, and Q. M. Chen, “Preparation of the ultrafine SrAl2O4:Eu,Dy needle-like phosphor and its optical properties,” Mater. Chem. Phys. 65(1), 103–106 (2000).
[Crossref]

Mater. Lett. (1)

H. D. Xiao, H. Y. Pei, J. Q. Liu, J. S. Cui, B. Jiang, Q. J. Hou, and W. R. Hu, “Fabrication, characterization, and photocatalysis of GaN–Ga2O3core-shell nanoparticles,” Mater. Lett. 71, 145–147 (2012).
[Crossref]

Mater. Res. Bull. (1)

K. Girija, S. Thirumalairajan, G. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nano-structured β-Ga2O3,” Mater. Res. Bull. 48(6), 2296–2303 (2013).
[Crossref]

Nano Lett. (1)

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Opt. Mater. (2)

Y. H. Wang, K. Xu, D. R. Li, H. Zhao, and Z. F. Hu, “Persistent luminescence and photocatalytic properties of Ga2O3:Cr3+,Zn2+ phosphors,” Opt. Mater. 36(11), 1798–1801 (2014).
[Crossref]

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[Crossref]

RSC Advances (1)

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Sci. Rep. (1)

H. Liu, N. Gao, M. Y. Liao, and X. Fang, “Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances,” Sci. Rep. 5, 7716 (2015).

Semicond. Sci. Technol. (1)

P. K. Singh and S. T. Lakshmikumar, “Quenching and recovery of photoluminescence intensity of silicon nanoparticles embedded in optically transparent polymers,” Semicond. Sci. Technol. 17(10), 1123–1127 (2002).
[Crossref]

Sens. Actuators B Chem. (1)

Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B Chem. 93(1-3), 431–434 (2003).
[Crossref]

Thin Solid Films (1)

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516(17), 5768–5771 (2008).
[Crossref]

Trends Neurosci. (1)

S. A. Fisher, T. M. Fischer, and T. J. Carew, “Multiple overlapping processes underlying short-term synaptic enhancement,” Trends Neurosci. 20(4), 170–177 (1997).
[Crossref] [PubMed]

Water Res. (2)

G. Prados-Joya, M. Sánchez-Polo, J. Rivera-Utrilla, and M. Ferro-García, “Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation,” Water Res. 45(1), 393–403 (2011).
[Crossref] [PubMed]

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, and A. Oropesa, “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water,” Water Res. 42(14), 3799–3808 (2008).
[Crossref] [PubMed]

Other (1)

X. M. Sun and Y. D. Li, “Ga2O3 and GaN semiconductor hollow spheres,” Angew. Chem. Int, Edit. 43, 3827–3831 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of the synthesized samples (S1: Ga1.94O3: Cr0.01, In0.05; S2: Ga1.99O3: Cr0.01) and the pattern of JCPDS No.41-1103 for β-Ga2O3.
Fig. 2
Fig. 2 Emission (a) and excitation (b) spectra of S1: Ga1.94O3: Cr0.01, In0.05 and S2: Ga1.99O3: Cr0.01 phosphors at room temperature. The emission spectra were under 320 nm excitation and the excitation spectra were monitored at 690 nm.
Fig. 3
Fig. 3 The persistent luminescence decay curves of S1: Ga1.94O3: Cr0.01, In0.05 and S2: Ga1.99O3: Cr0.01 phosphors monitored at 690 nm after excited by the 254 nm light for 5 min. The fitting curves are shown as green empty circle and triangle, respectively.
Fig. 4
Fig. 4 TL curves of S1: Ga1.94O3: Cr0.01, In0.05 and S2: Ga1.99O3: Cr0.01 at the region of 310 K-450 K. The samples were irradiated for 5 min by a UV lamp and then placed in the dark room for 3 min before the measurement. The fitting curve of S1 was shown as the red dash line, which can be divided into two peaks and were shown as green and blue dash lines, respectively. The inset shows the TL curve of S2 for comparing.
Fig. 5
Fig. 5 Photocatalytic activity of S1: Ga1.94O3: Cr0.01, In0.05 and S2: Ga1.99O3: Cr0.01 for degradation of RhB under mercury lamp, the percentage of degradation is recorded at 10 min irradiated time intervals.
Fig. 6
Fig. 6 A schematic representation of the persistent luminescence and photocatalysis mechanism.

Tables (1)

Tables Icon

Table 1 Fitted results for the persistent luminescence curves of S1 and S2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 + I 1 exp( t τ 1 )+ I 2 exp( t τ 2 )

Metrics