Abstract

Long persistent phosphors in the near-infrared (NIR) region have attracted much attention due to the potential application in in vivo imaging. La3GaGe5O16:Cr3+ phosphor presents a NIR long persistent luminescence after the short UV-irradiation. La3GaGe5O16 host also exhibits a cyan persistent luminescence. The optimal concentration of Cr3+ in La3GaGe5O16 is experimentally about 0.01 and the afterglow time can last more than 30 min. The estimated trap depth which varies continuously as a function of delay time is evidence for the presence of a continuous trap distribution. In order to improve the performance of afterglow luminescence of the La3GaGe5O16:Cr3+, we modified composition around Cr3+ by adjusting the Ge/O content. La3GaGe5O16:Cr3+ is shown to be a new near-infrared persistent phosphor potentially suitable for in vivo imaging due to its 650nm-750nm emission range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phosphorescence performance of La3GaGe5O16:Tb3+ by enhancing the bridging oxygen vacancies

Shaoan Zhang, Yihua Hu, and He Duan
Opt. Mater. Express 6(6) 1998-2013 (2016)

Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor

Wuzhao Yan, Feng Liu, Yi-Ying Lu, Xiao-Jun Wang, Min Yin, and Zhengwei Pan
Opt. Express 18(19) 20215-20221 (2010)

Multiple magnification effects of Ce3+ ions on near-infrared persistent luminescence of Cr-doped LaAlO3

Yi Zhang, Rui Huang, Zhenxu Lin, Jie Song, Xiang Wang, Yanqing Guo, Chao Song, Ying Yu, and John Robertson
Opt. Mater. Express 6(3) 922-928 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
    [Crossref] [PubMed]
  2. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
    [Crossref] [PubMed]
  3. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [Crossref] [PubMed]
  4. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  5. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
    [Crossref] [PubMed]
  6. R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
    [Crossref] [PubMed]
  7. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).
  8. D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
    [Crossref]
  9. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  10. F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
    [Crossref] [PubMed]
  11. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  12. A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
    [Crossref] [PubMed]
  13. D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
    [Crossref] [PubMed]
  14. S. Ye, E. H. Song, E. Ma, S. J. Zhang, J. Wang, X. Y. Chen, and J. R. Qiu, “Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+,” Opt. Mater. Express 4(4), 638–6489 (2014).
    [Crossref]
  15. Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
    [Crossref]
  16. F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
    [Crossref] [PubMed]
  17. J. Zhou and Z. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
    [Crossref]
  18. J. Zhou and Z. Xia, “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Advances 4(86), 46313–46318 (2014).
    [Crossref]
  19. S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
    [Crossref]
  20. K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  21. R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  22. K. S. Chuang, TL Glow Curve Analyzer (Korea Atomic Energy Research Institute and Gyeongsang National University, 2008).
  23. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
    [Crossref]
  24. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22(179), 903–922 (1970).
    [Crossref]
  25. M. A. Omar, Elementary Solid State Physics: Principles and Applications, Addison-Wesley series in solid state sciences (Addison-Wesley Pub. Co., 1975).
  26. E. L. Simmons, “Diffuse reflectance spectroscopy: a comparison of the theories,” Appl. Opt. 14(6), 1380–1386 (1975).
    [Crossref] [PubMed]
  27. J. H. Nobbs, “Kubelka—Munk theory and the prediction of reflectance,” Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985).
    [Crossref]

2015 (1)

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

2014 (8)

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

S. Ye, E. H. Song, E. Ma, S. J. Zhang, J. Wang, X. Y. Chen, and J. R. Qiu, “Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+,” Opt. Mater. Express 4(4), 638–6489 (2014).
[Crossref]

Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
[Crossref]

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

J. Zhou and Z. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

J. Zhou and Z. Xia, “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Advances 4(86), 46313–46318 (2014).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

2013 (4)

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

2012 (2)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2008 (2)

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

1985 (1)

J. H. Nobbs, “Kubelka—Munk theory and the prediction of reflectance,” Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985).
[Crossref]

1975 (1)

1970 (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22(179), 903–922 (1970).
[Crossref]

1969 (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
[Crossref]

Abdukayum, A.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Bettinelli, M.

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

Bos, A. J.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Burbano, D. C. R.

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

Capobianco, J. A.

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Chen, D.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Chen, J. T.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Chen, L.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Chen, R.

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Chen, X. Y.

Chen, Y.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Chevallier, P.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Chilian, C.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Chuang, Y. J.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Davis, E. A.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22(179), 903–922 (1970).
[Crossref]

Dorenbos, P.

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

Fortin, M. A.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Gossuin, Y.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
[Crossref]

Hellebust, A.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Hu, Y.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Ji, Z.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Ju, G.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Lagueux, J.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Laurent, S.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Li, C.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Li, Y.

Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
[Crossref]

Liang, Y.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

Lin, J.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Liu, F.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lu, H.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Ma, E.

Mott, N. F.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22(179), 903–922 (1970).
[Crossref]

Naccache, R.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Nobbs, J. H.

J. H. Nobbs, “Kubelka—Munk theory and the prediction of reflectance,” Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985).
[Crossref]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Pan, Z.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Pittet, M. J.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Prasad, P. N.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Qiu, J. R.

Richards-Kortum, R.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Rodríguez, E. M.

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

Simmons, E. L.

Smet, P. F.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Song, E. H.

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
[Crossref]

Vander Elst, L.

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Wang, J.

Wang, T.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Wang, Z.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Weissleder, R.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Xia, Z.

J. Zhou and Z. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

J. Zhou and Z. Xia, “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Advances 4(86), 46313–46318 (2014).
[Crossref]

Xie, J.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Yan, W.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Yan, X. P.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Yang, P.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Ye, S.

Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
[Crossref]

S. Ye, E. H. Song, E. Ma, S. J. Zhang, J. Wang, X. Y. Chen, and J. R. Qiu, “Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+,” Opt. Mater. Express 4(4), 638–6489 (2014).
[Crossref]

Zhang, Q.

Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
[Crossref]

Zhang, S.

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Zhang, S. J.

Zhao, Q.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Zhen, Z.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Zhou, J.

J. Zhou and Z. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

J. Zhou and Z. Xia, “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Advances 4(86), 46313–46318 (2014).
[Crossref]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

R. Naccache, P. Chevallier, J. Lagueux, Y. Gossuin, S. Laurent, L. Vander Elst, C. Chilian, J. A. Capobianco, and M. A. Fortin, “Imaging: high relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging,” Adv. Healthc. Mater. 2(11), 1478–1488 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Chem. Rev. (1)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Inorg. Chem. (1)

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

J. Zhou and Z. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

Y. Li, S. Ye, and Q. Zhang, “Ultra-broadband near-infrared luminescence of ordered–disordered multi-sited Cr3+ in La3Ga5.5Nb0.5O14:Cr3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4636–4641 (2014).
[Crossref]

D. C. R. Burbano, E. M. Rodríguez, P. Dorenbos, M. Bettinelli, and J. A. Capobianco, “The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 228–231 (2014).
[Crossref]

Nano Lett. (1)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nature (1)

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Philos. Mag. (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22(179), 903–922 (1970).
[Crossref]

Phys. Rev. B (1)

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap distributions in persistent phosphos,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Phys. Rev. Lett. (1)

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, B Basic Res. 15(2), 627–637 (1966).
[Crossref]

Rev. Prog. Color. Relat. Top. (1)

J. H. Nobbs, “Kubelka—Munk theory and the prediction of reflectance,” Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985).
[Crossref]

RSC Advances (2)

J. Zhou and Z. Xia, “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Advances 4(86), 46313–46318 (2014).
[Crossref]

S. Zhang, Y. Hu, L. Chen, G. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Sci. Rep. (1)

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554–1558 (2013).
[Crossref] [PubMed]

Other (3)

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).

M. A. Omar, Elementary Solid State Physics: Principles and Applications, Addison-Wesley series in solid state sciences (Addison-Wesley Pub. Co., 1975).

K. S. Chuang, TL Glow Curve Analyzer (Korea Atomic Energy Research Institute and Gyeongsang National University, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The XRD pattern of La3Ga1-xGe5O16:xCr3+ phosphor and that of ICSD#50521 given for comparison (bottom); (b) Experimental and calculated of the XRD refinement of La3GaGe5O16:0.01Cr.
Fig. 2
Fig. 2 The PLE and PL spectra of La3Ga1Ge5O16:Cr3+ at room temperature.
Fig. 3
Fig. 3 (a-b) the afterglow emission and images of La3Ga0.99Ge5O16:0.01Cr3+ at different time; (c) The afterglow decay curves of La3Ga1-xGe5O16:xCr3+ (x = 0, 0.005, 0.01, 0.02, 0.03 and 0.05) at room temperature, respectively.
Fig. 4
Fig. 4 (a) The thermoluminescence (TL) glow curves of La3Ga1-xGe5O16:xCr3+ (x = 0, 0.005, 0.01, 0.02, and 0.03) at waiting time of 3 min after the removal of excitation; (b) TL glow curves of La3Ga0.99Ge5O16:0.01Cr3+ at different delay times (t = 0.5, 1, 3, 5, 10 and 15min);(c) TL glow curves of the typical sample La3Ga0.99Ge5O16: 0.01Cr3+, the square dots are the measured data, the red and blue solid lines are the Gaussian curves;(d) TL glow curves of un-doped La3GaGe5O16 sample .
Fig. 5
Fig. 5 Red emission images of La3GaGe5+xO16+4x:0.01Cr3+ (−0.05≤x≤0.05) recorded by a classic Reflex digital camera with the same exposure time varying with the different afterglow time (t = 0.5, 3, 5, 10 and 15 min)
Fig. 6
Fig. 6 The afterglow curves of ZnGa2O4:Cr3+ and La3GaGe5O16:Cr3+.
Fig. 7
Fig. 7 Schematic illustration of the trapping and releasing processes of La3GaGe5O16:Cr3+ phosphor.

Metrics