Abstract

Physical properties of oxide glasses depend on the cooling process from the super-cooled liquid state. It is demonstrated that the Sn2+ species possessing electrons in the outermost shell can function as a qualitative probe cation to evaluate the randomness of the host glass network. With slower cooling, the formation of a more dense glass network is observed as confirmed by the heat capacity, elastic modulus, 11B NMR, first sharp diffraction peak of X-ray diffraction, and Boson peak results. The optical absorption, photoluminescence (PL), and Sn K-edge X-ray absorption fine structure data strongly suggest that the aggregation of Sn2+ results from the slow-cooling of the melt, and that PL properties of Sn2+ can be affected by the ordering of the transient state of super-cooled liquid. The results highlight that the structure of the transient state of glass is important for the functionalization of optical glasses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence of Sn2+ center in oxide glass with a tendency toward phase separation

Hirokazu Masai, Shun Okumura, Takahiro Ohkubo, and Takayuki Yanagida
Opt. Mater. Express 7(8) 2993-3002 (2017)

Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass

Hirokazu Masai, Toshiro Tanimoto, Takumi Fujiwara, Syuji Matsumoto, Yomei Tokuda, and Toshinobu Yoko
Opt. Express 20(25) 27319-27326 (2012)

High energy-transfer rate from Sn2+ to Mn2+ in phosphate glasses

Hirokazu Masai, Yusuke Hino, Takayuki Yanagida, Yutaka Fujimoto, and Yomei Tokuda
Opt. Mater. Express 5(3) 617-622 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
    [Crossref]
  2. G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass,” J. Chem. Phys. 43(1), 139–146 (1965).
    [Crossref]
  3. C. A. Angell, “Formation of glasses from liquids and biopolymers,” Science 267(5206), 1924–1935 (1995).
    [Crossref] [PubMed]
  4. C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
    [Crossref]
  5. H. Shintani and H. Tanaka, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7(11), 870–877 (2008).
    [Crossref] [PubMed]
  6. V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
    [Crossref] [PubMed]
  7. J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
    [Crossref] [PubMed]
  8. M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
    [Crossref]
  9. C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
    [Crossref]
  10. A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
    [Crossref]
  11. J. Wu and J. F. Stebbins, “Quench rate and temperature effects on boron coordination in aluminoborosilicate melts,” J. Non-Cryst. Solids 356(41-42), 2097–2108 (2010).
    [Crossref]
  12. F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
    [Crossref]
  13. H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).
  14. V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and supercooled liquids,” Annu. Rev. Phys. Chem. 58(1), 235–266 (2007).
    [Crossref] [PubMed]
  15. M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
    [Crossref]
  16. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd edition (CRC Press, 2007).
  17. J. A. Duffy and M. D. Ingram, “Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses,” J. Am. Chem. Soc. 93(24), 6448–6454 (1971).
    [Crossref]
  18. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides,” J. Appl. Phys. 79(3), 1736–1740 (1996).
    [Crossref]
  19. V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
    [Crossref]
  20. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
    [Crossref]
  21. R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
    [Crossref]
  22. H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
    [Crossref]
  23. H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
    [Crossref]
  24. H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
    [Crossref] [PubMed]
  25. M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
    [Crossref]
  26. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
    [Crossref]
  27. A. Koreeda and S. Saikan, “Note: Higher resolution Brillouin spectroscopy by offset stabilization of a tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 82(12), 126103 (2011).
    [Crossref] [PubMed]
  28. S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
    [Crossref]
  29. J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
    [Crossref]
  30. H. He and M. F. Thorpe, “Elastic Properties of Glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
    [Crossref] [PubMed]
  31. G. E. Jellison and P. J. Bray, “A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses,” J. Non-Cryst. Solids 29(2), 187–206 (1978).
    [Crossref]
  32. J. Zhong and P. J. Bray, “Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR,” J. Non-Cryst. Solids 111(1), 67–76 (1989).
    [Crossref]
  33. T. Rouxel, “Elastic properties and short-to medium-range order in glasses,” J. Am. Ceram. Soc. 90(10), 3019–3039 (2007).
    [Crossref]
  34. V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun. 57(9), 757–761 (1986).
    [Crossref]
  35. A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
    [Crossref] [PubMed]
  36. T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
    [Crossref] [PubMed]
  37. V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
    [Crossref]
  38. V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
    [Crossref]
  39. N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
    [Crossref]
  40. S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
    [Crossref]
  41. P. H. Gaskell and D. J. Wallis, “Medium-range order in silica, the canonical network glass,” Phys. Rev. Lett. 76(1), 66–69 (1996).
    [Crossref] [PubMed]
  42. S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
    [Crossref] [PubMed]
  43. C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
    [Crossref]
  44. J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
    [Crossref] [PubMed]
  45. F. Izumi, “Pattern-Fitting Structure Refinement of Tin(II) Oxide,” J. Solid State Chem. 38(3), 381–385 (1981).
    [Crossref]
  46. K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
    [Crossref]
  47. H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
    [Crossref]
  48. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
    [Crossref] [PubMed]
  49. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. (Wiley, 2011).

2014 (3)

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

2013 (1)

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

2012 (2)

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

2011 (1)

A. Koreeda and S. Saikan, “Note: Higher resolution Brillouin spectroscopy by offset stabilization of a tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 82(12), 126103 (2011).
[Crossref] [PubMed]

2010 (2)

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

J. Wu and J. F. Stebbins, “Quench rate and temperature effects on boron coordination in aluminoborosilicate melts,” J. Non-Cryst. Solids 356(41-42), 2097–2108 (2010).
[Crossref]

2009 (1)

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

2008 (2)

H. Shintani and H. Tanaka, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7(11), 870–877 (2008).
[Crossref] [PubMed]

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

2007 (5)

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and supercooled liquids,” Annu. Rev. Phys. Chem. 58(1), 235–266 (2007).
[Crossref] [PubMed]

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

T. Rouxel, “Elastic properties and short-to medium-range order in glasses,” J. Am. Ceram. Soc. 90(10), 3019–3039 (2007).
[Crossref]

2005 (2)

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

2004 (1)

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref] [PubMed]

2003 (2)

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
[Crossref]

2002 (1)

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

2001 (1)

C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
[Crossref]

2000 (2)

S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
[Crossref]

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

1996 (3)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

P. H. Gaskell and D. J. Wallis, “Medium-range order in silica, the canonical network glass,” Phys. Rev. Lett. 76(1), 66–69 (1996).
[Crossref] [PubMed]

M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
[Crossref]

1995 (3)

C. A. Angell, “Formation of glasses from liquids and biopolymers,” Science 267(5206), 1924–1935 (1995).
[Crossref] [PubMed]

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
[Crossref] [PubMed]

1992 (2)

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

1991 (2)

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[Crossref]

V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
[Crossref]

1989 (1)

J. Zhong and P. J. Bray, “Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR,” J. Non-Cryst. Solids 111(1), 67–76 (1989).
[Crossref]

1986 (1)

V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun. 57(9), 757–761 (1986).
[Crossref]

1985 (2)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

H. He and M. F. Thorpe, “Elastic Properties of Glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[Crossref] [PubMed]

1981 (1)

F. Izumi, “Pattern-Fitting Structure Refinement of Tin(II) Oxide,” J. Solid State Chem. 38(3), 381–385 (1981).
[Crossref]

1979 (1)

K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
[Crossref]

1978 (1)

G. E. Jellison and P. J. Bray, “A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses,” J. Non-Cryst. Solids 29(2), 187–206 (1978).
[Crossref]

1976 (1)

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

1975 (1)

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

1971 (1)

J. A. Duffy and M. D. Ingram, “Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses,” J. Am. Chem. Soc. 93(24), 6448–6454 (1971).
[Crossref]

1965 (1)

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass,” J. Chem. Phys. 43(1), 139–146 (1965).
[Crossref]

Adachi, G.

K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
[Crossref]

Adam, G.

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass,” J. Chem. Phys. 43(1), 139–146 (1965).
[Crossref]

Agarwal, A.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Akola, J.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Alonso, B.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Angeli, F.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Angell, C. A.

M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
[Crossref]

C. A. Angell, “Formation of glasses from liquids and biopolymers,” Science 267(5206), 1924–1935 (1995).
[Crossref] [PubMed]

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[Crossref]

Barnett, B.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Blasse, G.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Boehm, L.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Börjesson, L.

J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
[Crossref] [PubMed]

Boscaino, R.

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

Bray, P. J.

J. Zhong and P. J. Bray, “Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR,” J. Non-Cryst. Solids 111(1), 67–76 (1989).
[Crossref]

G. E. Jellison and P. J. Bray, “A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses,” J. Non-Cryst. Solids 29(2), 187–206 (1978).
[Crossref]

Bressel, L.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Bujoli, B.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Cannas, M.

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

Capron, M.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Car, R.

C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
[Crossref]

Charpentier, T.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

D’Amico, M.

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

Davis, K. M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

de Ligny, D.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Debolt, M. A.

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

Dimitrov, V.

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Duffy, J. A.

J. A. Duffy and M. D. Ingram, “Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses,” J. Am. Chem. Soc. 93(24), 6448–6454 (1971).
[Crossref]

Durand, J.-O.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Easteal, A. J.

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

Ediger, M. D.

M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
[Crossref]

Fayon, F.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Fujiwara, A.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Fujiwara, T.

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Gan, Z.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Gaskell, P. H.

P. H. Gaskell and D. J. Wallis, “Medium-range order in silica, the canonical network glass,” Phys. Rev. Lett. 76(1), 66–69 (1996).
[Crossref] [PubMed]

Gibbs, J. H.

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass,” J. Chem. Phys. 43(1), 139–146 (1965).
[Crossref]

Greaves, G. N.

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Grigera, T. S.

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

Gupta, P. K.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Gurevich, V. L.

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
[Crossref]

He, H.

H. He and M. F. Thorpe, “Elastic Properties of Glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[Crossref] [PubMed]

Hiramitsu, N.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Hoatson, G.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Howells, W. S.

J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
[Crossref] [PubMed]

Ikushima, J. A.

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Inamura, Y.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Ingram, M. D.

J. A. Duffy and M. D. Ingram, “Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses,” J. Am. Chem. Soc. 93(24), 6448–6454 (1971).
[Crossref]

Ishikawa, T.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Itou, M.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Izumi, F.

F. Izumi, “Pattern-Fitting Structure Refinement of Tin(II) Oxide,” J. Solid State Chem. 38(3), 381–385 (1981).
[Crossref]

Jellison, G. E.

G. E. Jellison and P. J. Bray, “A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses,” J. Non-Cryst. Solids 29(2), 187–206 (1978).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

Kanemitsu, Y.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

King, I.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Kisliuk, A.

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

Kodama, M.

S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
[Crossref]

Kohara, S.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Kojima, S.

S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
[Crossref]

Komatsu, T.

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

Koreeda, A.

A. Koreeda and S. Saikan, “Note: Higher resolution Brillouin spectroscopy by offset stabilization of a tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 82(12), 126103 (2011).
[Crossref] [PubMed]

Koskentalo, T.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Kushibiki, J.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

Le Calvé, S.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Leone, M.

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

Leskelä, M.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Loucks, R. J.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Lubchenko, V.

V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and supercooled liquids,” Annu. Rev. Phys. Chem. 58(1), 235–266 (2007).
[Crossref] [PubMed]

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref] [PubMed]

Machida, K.

K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
[Crossref]

Malinovsky, V. K.

V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
[Crossref]

V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun. 57(9), 757–761 (1986).
[Crossref]

Martin-Mayor, V.

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

Masai, H.

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Massiot, D.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Massobrio, C.

C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
[Crossref]

Masuno, A.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Matsumoto, S.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Matsushita, S.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Mauro, J. C.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Messina, F.

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

Mizuno, A.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Moynihan, C. T.

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

Nagel, S. R.

M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
[Crossref]

Novikov, V. N.

S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
[Crossref]

V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
[Crossref]

Ohara, K.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Ohashi, Y.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

Ohishi, Y.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Okada, J. T.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Okumura, S.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

Parisi, G.

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

Parshin, D. A.

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
[Crossref]

Pasquarello, A.

C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
[Crossref]

Patrikeev, L.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Quitmann, D.

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

Reisfeld, R.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Ropo, M.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Rouxel, T.

T. Rouxel, “Elastic properties and short-to medium-range order in glasses,” J. Am. Ceram. Soc. 90(10), 3019–3039 (2007).
[Crossref]

Saikan, S.

A. Koreeda and S. Saikan, “Note: Higher resolution Brillouin spectroscopy by offset stabilization of a tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 82(12), 126103 (2011).
[Crossref] [PubMed]

Saito, K.

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Sakka, S.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Sakurai, Y.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Schober, H. R.

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
[Crossref]

Schuller, S.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Sekiya, E. H.

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

Sen, S.

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Shimodaira, N.

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Shintani, H.

H. Shintani and H. Tanaka, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7(11), 870–877 (2008).
[Crossref] [PubMed]

Shiokawa, J.

K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
[Crossref]

Skuja, L.

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

Sokolov, A. P.

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
[Crossref]

V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun. 57(9), 757–761 (1986).
[Crossref]

Soltwisch, M.

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

Stebbins, J. F.

J. Wu and J. F. Stebbins, “Quench rate and temperature effects on boron coordination in aluminoborosilicate melts,” J. Non-Cryst. Solids 356(41-42), 2097–2108 (2010).
[Crossref]

Suzuki, Y.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

Suzuya, K.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Swenson, J.

J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
[Crossref] [PubMed]

Tada, A.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

Takahashi, Y.

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Takata, M.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

Tanaka, H.

H. Shintani and H. Tanaka, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7(11), 870–877 (2008).
[Crossref] [PubMed]

Tanimoto, T.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

Teramura, K.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

Thorpe, M. F.

H. He and M. F. Thorpe, “Elastic Properties of Glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[Crossref] [PubMed]

Tokuda, Y.

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

Tomozawa, M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Tucker, J.

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

Usuki, T.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Verrocchio, P.

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

Villain, O.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Wallis, D. J.

P. H. Gaskell and D. J. Wallis, “Medium-range order in silica, the canonical network glass,” Phys. Rev. Lett. 76(1), 66–69 (1996).
[Crossref] [PubMed]

Watanabe, Y.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Wei, T. C.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

Wolynes, P. G.

V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and supercooled liquids,” Annu. Rev. Phys. Chem. 58(1), 235–266 (2007).
[Crossref] [PubMed]

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref] [PubMed]

Wondraczek, L.

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

Wu, J.

J. Wu and J. F. Stebbins, “Quench rate and temperature effects on boron coordination in aluminoborosilicate melts,” J. Non-Cryst. Solids 356(41-42), 2097–2108 (2010).
[Crossref]

Yahiro, J.

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Yamada, Y.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

Yanagida, T.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

Yoko, T.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Zhong, J.

J. Zhong and P. J. Bray, “Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR,” J. Non-Cryst. Solids 111(1), 67–76 (1989).
[Crossref]

Adv. Phys. (1)

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Annu. Rev. Phys. Chem. (1)

V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and supercooled liquids,” Annu. Rev. Phys. Chem. 58(1), 235–266 (2007).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

J. Am. Ceram. Soc. (2)

T. Rouxel, “Elastic properties and short-to medium-range order in glasses,” J. Am. Ceram. Soc. 90(10), 3019–3039 (2007).
[Crossref]

C. T. Moynihan, A. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceram. Soc. 59(1-2), 12–16 (1976).
[Crossref]

J. Am. Chem. Soc. (1)

J. A. Duffy and M. D. Ingram, “Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses,” J. Am. Chem. Soc. 93(24), 6448–6454 (1971).
[Crossref]

J. Appl. Phys. (2)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys. 87(6), 3113–3121 (2000).
[Crossref]

J. Chem. Phys. (4)

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref] [PubMed]

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass,” J. Chem. Phys. 43(1), 139–146 (1965).
[Crossref]

S. Kojima, V. N. Novikov, and M. Kodama, “Fast relaxation, boson peak, and anharmonicity in Li2O-B2O3 glasses,” J. Chem. Phys. 113(15), 6344–6350 (2000).
[Crossref]

J. Lumin. (1)

K. Machida, G. Adachi, and J. Shiokawa, “Luminescence properties of Eu(II)-borate and Eu2+-activated Sr-borates,” J. Lumin. 21(1), 101–110 (1979).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2137–2143 (2014).
[Crossref]

J. Non-Cryst. Solids (7)

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[Crossref]

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

J. Wu and J. F. Stebbins, “Quench rate and temperature effects on boron coordination in aluminoborosilicate melts,” J. Non-Cryst. Solids 356(41-42), 2097–2108 (2010).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Emission Property of Sn2+-Doped ZnO-P2O5 Glass,” J. Non-Cryst. Solids 383, 184–187 (2014).
[Crossref]

G. E. Jellison and P. J. Bray, “A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses,” J. Non-Cryst. Solids 29(2), 187–206 (1978).
[Crossref]

J. Zhong and P. J. Bray, “Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR,” J. Non-Cryst. Solids 111(1), 67–76 (1989).
[Crossref]

J. Non-Crystal. Solids (1)

H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and J. A. Ikushima, “Refractive index and density changes in silica glass by halogen doping,” J. Non-Crystal. Solids 353, 568–572 (2007).

J. Phys. Chem. (1)

M. D. Ediger, C. A. Angell, and S. R. Nagel, “Supercooled liquids and glasses,” J. Phys. Chem. 100(31), 13200–13212 (1996).
[Crossref]

J. Phys. Condens. Matter (1)

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, and M. Takata, “Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions,” J. Phys. Condens. Matter 19(50), 506101 (2007).
[Crossref]

J. Solid State Chem. (4)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

F. Izumi, “Pattern-Fitting Structure Refinement of Tin(II) Oxide,” J. Solid State Chem. 38(3), 381–385 (1981).
[Crossref]

Magn. Reson. Chem. (1)

D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one-and Two-dimensional Solid-state NMR Spectra,” Magn. Reson. Chem. 40(1), 70–76 (2002).
[Crossref]

Nat. Commun. (1)

S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J. T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, and T. Usuki, “Atomic and electronic structures of an extremely fragile liquid,” Nat. Commun. 5, 5892 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Shintani and H. Tanaka, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7(11), 870–877 (2008).
[Crossref] [PubMed]

Nature (1)

T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, “Universal link between the boson peak and transverse phonons in glass,” Nature 422, 289–292 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Lett. A (1)

V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov, “Log-normal spectrum of low-energy vibrational excitations in glasses,” Phys. Lett. A 153(1), 63–66 (1991).
[Crossref]

Phys. Rev. B (5)

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and J. A. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67(9), 094203 (2003).
[Crossref]

F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of temperature and thermal history on borosilicate glass structure,” Phys. Rev. B 85(5), 054110 (2012).
[Crossref]

M. D’Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino, “Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy,” Phys. Rev. B 78(1), 014203 (2008).
[Crossref]

C. Massobrio, A. Pasquarello, and R. Car, “Short- and intermediate-range structure of liquid GeSe2,” Phys. Rev. B 64(14), 144205 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. Swenson, L. Börjesson, and W. S. Howells, “Structure of borate glasses from neutron-diffraction experiments,” Phys. Rev. B Condens. Matter 52(13), 9310–9319 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

P. H. Gaskell and D. J. Wallis, “Medium-range order in silica, the canonical network glass,” Phys. Rev. Lett. 76(1), 66–69 (1996).
[Crossref] [PubMed]

A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, “Medium-range order in glasses: comparison of Raman and diffraction measurements,” Phys. Rev. Lett. 69(10), 1540–1543 (1992).
[Crossref] [PubMed]

H. He and M. F. Thorpe, “Elastic Properties of Glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Koreeda and S. Saikan, “Note: Higher resolution Brillouin spectroscopy by offset stabilization of a tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 82(12), 126103 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass,” Sci. Rep. 3, 3541 (2013).
[Crossref] [PubMed]

Science (1)

C. A. Angell, “Formation of glasses from liquids and biopolymers,” Science 267(5206), 1924–1935 (1995).
[Crossref] [PubMed]

Solid State Commun. (1)

V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun. 57(9), 757–761 (1986).
[Crossref]

Other (2)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd edition (CRC Press, 2007).

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Specific heat capacity depending on the cooling condition. DSC curves of the 0.5SnO-24.5SrO-75B2O3 glasses prepared by different quenching conditions. rapid quenching at 300 K (a), quenching at 573 K (b) and at 773 K (c).
Fig. 2
Fig. 2 Elastic property calculated by Brillouin scattering. a. Brillouin scattering spectra of the 0.5SnO-24.5SrO-75B2O3 glasses prepared at different quenching temperatures: rapid quenching at 300 K, at 573 K and at 773 K. b. Molar volumes and longitudinal elastic modulus of the 0.5SnO-24.5SrO-75B2O3 glasses as a function of the quenched temperatures.
Fig. 3
Fig. 3 Structural analysis by 11B MAS NMR measurement. a. 11B MAS NMR spectra of the 0.5SnO-24.5SrO-75B2O3 glasses prepared at different quenching temperatures: rapid quenching at 300 K and at 773 K. b. Boron unit ratio of the 0.5SnO-24.5SrO-75B2O3 glasses as a function of quenched temperatureL spectra of xMn-5.0SZP glasses. The excitation energy was 4.5 eV.
Fig. 4
Fig. 4 Analysis of structural change depending on the cooling conditions. a. Raman scattering spectrum of the 0.5SnO-24.5SrO-75B2O3 glass quenched at 300 K along with the fitting line using log normal functions. b. Values of νBPmax as a function of quenched temperature. c. S(Q) curves of the 0.5SnO-24.5SrO-75B2O3 glasses prepared by different quenching rates: quenching at 300 K and 773 K. Inset shows a magnified figure around FSDP. The FSDP peak located approximately 1.2 Å−1 increases by slow cooling. d. Total correlation functions, T(r), for the glass quenched 300 K and 773 K.
Fig. 5
Fig. 5 Sn K-edge XANES spectrum of 0.5SnO-24.5SrO-75B2O3 glass prepared at quenching at r.t. along with those of SnO and SnO2.
Fig. 6
Fig. 6 Site change of Sn2+ depending on the cooling condition. a. Optical absorption spectra of the 0.5SnO-24.5SrO-75B2O3 glasses prepared at different cooling conditions. Inset shows the magnified spectra at the absorption edge region. b. PL and PLE spectra of the 0.5SnO-24.5SrO-75B2O3 glasses prepared by different quenching rates: rapid quenching at 300 K, quenching at 573 K, and at 773 K. The spectrum of (Sr0.98Sn0.02)B6O10 crystal is also shown. c. PL-PLE contour plots of these 0.5SnO-24.5SrO-75B2O3 glasses and the (Sr0.98Sn0.02)B6O10 crystal.
Fig. 7
Fig. 7 Local coordination state of Sn2+ species. k3χ(k) data for Sn of the 0.5SnO-24.5SrO-75B2O3 glasses prepared by different quenching rates: (a) rapid quenching at 300 K (b) quenching at 573 K (b), and 773 K (c). The datum of (Sr0.98Sn0.02)B6O10 crystal (d) is also shown.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ˙ (t)= A ρ C p V { h conv [T(t) -  T amb ] +  h cond [T(t) -  T plate ] + εσ[ T 4 (t) -  T 4 amb ] }

Metrics