Abstract

Optically transparent and electrically conductive semiconducting titanium suboxide nanometer thick films, which are technologically important in a wide variety of applications, show a nonlinear dependency of optical and electrical properties on film thickness and oxidation time. The optical, electrical, chemical, and structural properties of the sputter-deposited titanium suboxide nanofilms on fused quartz glass at room temperature are investigated by varying the film thickness, and the additional oxidation is controlled by the duration of air exposure. The optical properties of the nanofilms are simulated by considering them as both a homogeneous film as well as an inhomogeneous film with the combination of the Lorentz Drude model and the Maxwell Garnett effective medium theory (MG-EMT). Their electrical properties are simulated with the MG-EMT. The optical transmittance, electrical conductivity, secondary ion mass spectroscopy, x-ray photoemission spectroscopy analysis, and simulation of titanium suboxide nanofilms indicate that inhomogeneous film growth and oxidation are responsible for the nonlinear dependency. The oxygen atomic ratios to titanium for the as-deposited films depend on the deposition time and vary in 1.60–1.73, while those exposed to air for seven days increase to 1.79–1.99.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stoichiometry and structure driven optical properties of carbon incorporated titanium oxide thin films

Chang Mook Lee and Jaewu Choi
Opt. Mater. Express 6(11) 3594-3608 (2016)

Tri-band transparent conductive coating of indium tin oxide

Huafei Du, Mingyun Lv, Junhui Meng, and Weiyu Zhu
Appl. Opt. 55(34) D115-D119 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
    [Crossref]
  2. K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
    [Crossref]
  3. W. K. Jo and J. T. Kim, “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164(1), 360–366 (2009).
    [Crossref] [PubMed]
  4. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
    [Crossref]
  5. B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
    [Crossref]
  6. S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B Condens. Matter 51(19), 13023–13032 (1995).
    [Crossref] [PubMed]
  7. D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
    [Crossref]
  8. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
    [Crossref] [PubMed]
  9. D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
    [Crossref]
  10. T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
    [Crossref]
  11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
    [Crossref] [PubMed]
  12. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
    [Crossref]
  13. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
    [Crossref]
  14. A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
    [Crossref] [PubMed]
  15. S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
    [Crossref]
  16. C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
    [Crossref]
  17. A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
    [Crossref]
  18. Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
    [Crossref]
  19. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28(16), 3303–3317 (1989).
    [Crossref] [PubMed]
  20. L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
    [Crossref]
  21. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  22. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35(34), 6703–6707 (1996).
    [Crossref] [PubMed]
  23. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
    [Crossref]
  24. I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
    [Crossref]
  25. J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
    [Crossref]
  26. G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
    [Crossref]
  27. M. L. Pacholski and N. Winograd, “Imaging with mass spectrometry,” Chem. Rev. 99(10), 2977–3006 (1999).
    [Crossref] [PubMed]
  28. C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
    [Crossref]
  29. O. S. Heavens, Optical properties of thin solid films (Dover, 1991).
  30. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  31. J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
    [Crossref]
  32. H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
    [Crossref]
  33. J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
    [Crossref]

2015 (1)

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

2013 (2)

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

2011 (2)

D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
[Crossref]

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

2010 (3)

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
[Crossref] [PubMed]

2009 (1)

W. K. Jo and J. T. Kim, “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164(1), 360–366 (2009).
[Crossref] [PubMed]

2007 (1)

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

2006 (1)

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

2004 (2)

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

2003 (3)

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

2002 (1)

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

2001 (2)

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

2000 (1)

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

1999 (1)

M. L. Pacholski and N. Winograd, “Imaging with mass spectrometry,” Chem. Rev. 99(10), 2977–3006 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (2)

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[Crossref]

1996 (3)

R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
[Crossref]

S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35(34), 6703–6707 (1996).
[Crossref] [PubMed]

1995 (2)

J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
[Crossref]

S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B Condens. Matter 51(19), 13023–13032 (1995).
[Crossref] [PubMed]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

1993 (1)

L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
[Crossref]

1989 (1)

Adepalli, K. K.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Akiyoshi, M.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Alasaarela, T.

Albertin, K. F.

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

Albrand, G.

Allen, T. H.

Ando, M.

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

Andritschky, M.

L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
[Crossref]

Aoki, K.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Asahi, R.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Asai, K.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Bardi, U.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Barros, A. D.

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

Bennett, J. M.

Borgioli, F.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Borgogno, J. P.

Boyer, R. R.

R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

Carniglia, C. K.

Chaturvedi, S.

D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
[Crossref]

Chen, H.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Chen, P. S.

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

Ching, W. Y.

S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B Condens. Matter 51(19), 13023–13032 (1995).
[Crossref] [PubMed]

Cho, D. Y.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Credi, A.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Dave, P. N.

D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
[Crossref]

Devilliers, D.

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

Diniz, J. A.

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

Djurišic, A. B.

Doi, I.

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

dos Santos, M. P.

L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
[Crossref]

Du, H.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Elazar, J. M.

Elizalde, E.

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Fabio, A. D.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Fossati, A.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Fu, C.

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Fuentes, G. G.

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Giolli, C.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Gong, J.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Gopinadhan, M.

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Groult, H.

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

Guenther, K. H.

Han, J.

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

Hasegawa, T.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Helm, C. A.

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Hiltunen, J.

Hippler, R.

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Hofmann, K.

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

Honkanen, S.

Hornyak, G. L.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[Crossref]

Hwang, H.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Ihara, T.

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Iriyama, Y.

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jeon, S.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Jo, W. K.

W. K. Jo and J. T. Kim, “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164(1), 360–366 (2009).
[Crossref] [PubMed]

Ju, Y.

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Jung, S.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Karunagaran, B.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Kim, J. T.

W. K. Jo and J. T. Kim, “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164(1), 360–366 (2009).
[Crossref] [PubMed]

Kim, K.

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

Kim, S. Y.

Kong, J.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Kuittinen, M.

Kumar, R. T. R.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Kurz, H.

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

Kutsuna, S.

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Lazarides, B.

Lee, K.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Lee, S.

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

Lee, S. W.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Lee, T.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Leygraf, C.

J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
[Crossref]

Luebben, M.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Luysberg, M.

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

Macwan, D. P.

D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
[Crossref]

Majewski, M. L.

Mangalaraj, D.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Marcus, P.

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

Martin, C. R.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[Crossref]

Matsumoto, O.

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

Matsumura, M.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Meng, L.

L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
[Crossref]

Miranda, M.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Mitsui, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Miyoshi, J.

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

Miyoshi, M.

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

Mo, S. D.

S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B Condens. Matter 51(19), 13023–13032 (1995).
[Crossref] [PubMed]

Moors, M.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Morikawa, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Nakamura, I.

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Narayandass, S. K.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Negishi, N.

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Ohno, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Ohwaki, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Pacholski, M. L.

M. L. Pacholski and N. Winograd, “Imaging with mass spectrometry,” Chem. Rev. 99(10), 2977–3006 (1999).
[Crossref] [PubMed]

Pan, J.

J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
[Crossref]

Parmeggiani, S.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Patrissi, C. J.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[Crossref]

Pelletier, E.

Peng, C.

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

Pouilleau, J.

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

Przyluski, J.

J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
[Crossref]

Rakic, A. D.

Rana, V.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Rao, G. M.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Rizzi, G.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Saastamoinen, T.

Sanz, J. M.

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

Saxer, A.

Säynätjoki, A.

Schmell, R. A.

Scrivani, A.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Shyjumon, I.

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Siekierski, M.

J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
[Crossref]

Skaja, K.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Smirnov, B. M.

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Song, D.

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

Song, S.

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

Spangenberg, B.

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

Stenberg, P.

Sugihara, S.

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Sun, C.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Taga, Y.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Takeuchi, K.

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

Tervonen, A.

Thierry, D.

J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
[Crossref]

Tolstoguzov, A.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Troglio, S.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Tuttle-Hart, T.

Uhm, S.

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

Umebayashi, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Valov, I.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Viswanathan, C.

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Wang, C.

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

Wang, M.

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Wang, S.

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Wang, T. G.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Wang, Y.

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Waser, R.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Wedig, A.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Wen, L. S.

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Wieczorek, W.

J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
[Crossref]

Winograd, N.

M. L. Pacholski and N. Winograd, “Imaging with mass spectrometry,” Chem. Rev. 99(10), 2977–3006 (1999).
[Crossref] [PubMed]

Wu, C.

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

Yildiz, B.

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Yubero, F.

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

Zoppi, A.

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Adv. Condens. Matter Phys. (1)

Y. Ju, M. Wang, Y. Wang, S. Wang, and C. Fu, “Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application,” Adv. Condens. Matter Phys. 2013, 365475 (2013).
[Crossref]

Appl. Catal. A Gen. (1)

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Appl. Catal. B (1)

T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B 42(4), 403–409 (2003).
[Crossref]

Appl. Opt. (4)

Appl. Surf. Sci. (1)

H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, and L. S. Wen, “Use of effective medium theory to model the effect of the microstructure on dc conductivity of nano-titanium films,” Appl. Surf. Sci. 233(1–4), 99–104 (2004).
[Crossref]

Chem. Rev. (1)

M. L. Pacholski and N. Winograd, “Imaging with mass spectrometry,” Chem. Rev. 99(10), 2977–3006 (1999).
[Crossref] [PubMed]

Cryst. Res. Technol. (1)

B. Karunagaran, R. T. R. Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Electrochim. Acta (2)

J. Przyluski, M. Siekierski, and W. Wieczorek, “Effective Medium Theory in Studies of Conductivity of Composite Polymeric Electrolytes,” Electrochim. Acta 40(13-14), 2101–2108 (1995).
[Crossref]

J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application,” Electrochim. Acta 41(7–8), 1143–1153 (1996).
[Crossref]

J. Electrochem. Soc. (1)

S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive Switching Characteristics of Solution-Processed Transparent TiOx for Nonvolatile Memory Application,” J. Electrochem. Soc. 157(11), H1042–H1045 (2010).
[Crossref]

J. Hazard. Mater. (1)

W. K. Jo and J. T. Kim, “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164(1), 360–366 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

J. Mater. Sci. (3)

J. Pouilleau, D. Devilliers, H. Groult, and P. Marcus, “Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,” J. Mater. Sci. 32(21), 5645–5651 (1997).
[Crossref]

D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci. 46(11), 3669–3686 (2011).
[Crossref]

T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” J. Mater. Sci. 36(17), 4201–4207 (2001).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

C. Wu, P. S. Chen, C. Peng, and C. Wang, “TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror,” J. Mater. Sci. Mater. Electron. 24(7), 2461–2468 (2013).
[Crossref]

J. Mol. Catal. Chem. (1)

I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. Chem. 161(1–2), 205–212 (2000).
[Crossref]

J. Phys. Chem. B (1)

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[Crossref]

Mater. Sci. Eng. A (1)

R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

Microelectron. Eng. (1)

A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, “Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications,” Microelectron. Eng. 87(3), 443–446 (2010).
[Crossref]

Nat. Nanotechnol. (1)

A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, “Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems,” Nat. Nanotechnol. 11(1), 67–74 (2015).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B Condens. Matter 51(19), 13023–13032 (1995).
[Crossref] [PubMed]

Science (1)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

C. Giolli, F. Borgioli, A. Credi, A. D. Fabio, A. Fossati, M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, “Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system,” Surf. Coat. Tech. 202(1), 13–22 (2007).
[Crossref]

Surf. Interface Anal. (1)

G. G. Fuentes, E. Elizalde, F. Yubero, and J. M. Sanz, “Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy,” Surf. Interface Anal. 33(3), 230–237 (2002).
[Crossref]

Thin Solid Films (4)

L. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223(2), 242–247 (1993).
[Crossref]

D. Song, S. Uhm, S. Lee, J. Han, and K. Kim, “Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering,” Thin Solid Films 519(20), 7079–7085 (2011).
[Crossref]

K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, “Properties of evaporated titanium thin films and their possible application in single electron devices,” Thin Solid Films 436(2), 168–174 (2003).
[Crossref]

I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, “Deposition of titanium/titanium oxide clusters produced by magnetron sputtering,” Thin Solid Films 500(1-2), 41–51 (2006).
[Crossref]

Other (1)

O. S. Heavens, Optical properties of thin solid films (Dover, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 AFM images of titanium suboxide films deposited for (a) one, (b) two, (c) five, and (d) nine minutes, respectively. Before taking the images, they are exposed to the air atmosphere for 2 days. The image size is 200 nm by 200 nm. The top right corner shows the expanded scale bar of the vertical scales for better visibility.
Fig. 2
Fig. 2 (a) Ti 2p and (b) O 1s XPS core-level spectra of TiOx (58.2nm)/FQ exposed to the atmosphere for 2 days.
Fig. 3
Fig. 3 (a) TOF-SIMS Ti+ and Si+ ion profiles, and (b) TiO+ and O+ ion profiles of TiOx thin films deposited on FQ glass for one, two, five, and seven minutes. (c) The deposition duration dependent thickness of TiOx thin films.
Fig. 4
Fig. 4 (a) Optical transmittance spectra of TiOx deposited for one (black), two (red), five (green), and seven (blue) minutes on fused quartz glass substrates: As-deposited (Ti-10m, solid line), and exposed for 2 days (Ti-2D, dotted line) and for 7 days (Ti-7D, dashed line) to atmosphere. The experimental transmission spectra are fitted with optical models based in homogeneous as well as inhomogeneous mediums. The optical spectra of the 7-minute deposited TiOx films are vertically shifted by - 0.2 for the clear presentation. (b) Sheet resistance of titanium suboxide films on quartz glass substrates with variations in thickness and ambient air exposure durations.
Fig. 5
Fig. 5 Schematic diagram of the titanium suboxide thin film (optical constants: n1-jk1) with thickness of t1 on a glass (n2) substrate with thickness of t2 in air (n0 = n3 = 1) for (a) homogenous and (b) inhomogeneous medium based models.
Fig. 6
Fig. 6 Based on homogeneous film (black lines) and inhomogeneous film (red lines) models, the extracted real [(a) - (d)] and imaginary part [(e) - (h)] of the effective dielectric constants of titanium suboxide thin films deposited for (a) one, (b) two, (c) five, and (d) seven minutes: As-deposited (Ti-10m, solid line), and exposed for 2 days (Ti-2D, dotted line) and 7 days (Ti-7D, dashed line) to atmosphere. For comparison, the real and imaginary parts of the dielectric constants of metallic Ti (brown) and TiO2 (gray) are plotted in (a) and (d) and (e) and (h), respectively [21,22]. In graphs of (a), (b), (e), and (f), dashed-dotted lines appeared and are caused by the large overlapping of curves for Ti-2D (dotted) and Ti-7D (dashed).
Fig. 7
Fig. 7 Upper panels: From simulations for as-deposited (Ti-10m, red) and exposed for 2 days (Ti-2D, green) and 7 days (Ti-7D, blue) to atmosphere of one-, two-, five-, and seven-minute deposited titanium suboxide films as homogenous films (□), the extracted the oscillatory strengths of (a) free electron (ƒ0) and (b) - (e) bound electrons (f1, f2, f3, f4). Lower panels: From the simulations of the titanium suboxide films as inhomogeneous films (MG-EMT) (∆), the extracted oscillatory strengths of (a) free electron (f0´) and (b) - (e) bound electrons (f1´, f2´, f3´, f4´) for the host TiOx.
Fig. 8
Fig. 8 (a) Fill factors of Ti (□) and TiOx (∆) and (b) screening factor obtained using MG-EMT as a function of deposition time and exposure time. (c) The effective thickness of the titanium suboxide films obtained by the SIMS studies ( × ) and the optical modelings (based on homogeneous (□) and inhomogeneous (∆) films) as function of deposition time and exposure time. (d) The calculated resistivities of the films (□) (1/σeff) and the host TiOx only ( × ) (1/σh) based on the measured sheet resistance and the effective thickness. The oxygen-to-titanium ratio-dependent resistivity (diamond) is extracted from the literature [18].

Tables (3)

Tables Icon

Table 1 Extracted Sellmeier Coefficients from Transmission Spectra of FQ Glass Substrates Shown in Fig. 4(a)

Tables Icon

Table 2 Extracted Oscillatory Strength (fi), Damping Rate (Γi) and Resonance Energy (ωi) of TiOx Thin Films Based on Homogeneous Medium Models for As-deposited (Ti-10m), 2 Day (Ti-2D) and 7 Day (Ti-7D) Exposed Titanium Suboxide Films to Atmosphere

Tables Icon

Table 3 MG-EMT Fitting Parameters of Fill Factor (p), Screening Factor (k), Oscillatory Strength (fi), Damping Rate (Γi), and Resonance Energy (ωi) for TiOx When As-deposited (Ti-10m), 2 Day (Ti-2D), and 7 Day (Ti-7D) Air Exposed Titanium Suboxide Films Are Considered as Inhomogeneous Mediums That Consist of Ti (Guest) and TiOx (Host)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

T t = a 13 2 + b 13 2 c 13 2 + d 13 2 ,
a 13 =(1+ x 1 )(1+ x 2 )(1+ x 3 ) y 1 y 2 (1+ x 3 ), b 13 = y 1 (1+ x 2 )(1+ x 3 )+ y 2 (1+ x 3 )(1+ x 1 ),
x 1 = 1- n 1 2 - k 1 2 (1+ n 1 ) 2 + k 1 2 , x 2 = n 1 2 - n 2 2 + k 1 2 ( n 1 + n 2 ) 2 + k 1 2 , x 3 = n 2 -1 n 2 +1 ,
y 1 = 2 k 1 (1+ n 1 ) 2 + k 1 2 , y 2 = -2 n 2 k 1 ( n 1 + n 2 ) 2 + k 1 2 ,
c 13 = c 12 c 3 - d 12 d 3 + o 12 q 3 - p 12 r 3 , d 13 = d 12 c 3 + c 12 d 3 + p 12 q 3 + o 12 r 3 ,
c 12 = c 2 + x 1 q 2 - y 1 r 2 , d 12 = d 2 + y 1 q 2 + x 1 r 2 , o 12 = o 2 + x 1 s 2 - y 1 u 2 , p 12 = p 2 + y 1 s 2 + x 1 u 2 ,
c 2 = e a 1 cos g 1 , d 2 = e a 1 sin g 1 , c 3 =cos g 2 , d 3 =sin g 2 , s 2 = e - a 1 cos g 1 , u 2 =- e - a 1 sin g 1 ,
o 2 = e a 1 ( x 2 cos g 1 - y 2 sin g 1 ), p 2 = e a 1 ( y 2 cos g 1 + x 2 sin g 1 ),
q 2 = e - a 1 ( x 2 cos g 1 + y 2 sin g 1 ), r 2 = e - a 1 ( y 2 cos g 1 - x 2 sin g 1 ),
q 3 = x 3 cos g 2 , r 3 =- x 3 sin g 2 ,
a 1 = 2p k 1 t 1 l , g 1 = 2p n 1 t 1 l , g 2 = 2p n 2 t 2 l +d,
n= 1 2 [ ( e 1 2 + e 2 2 ) 1/2 + e 1 ] 1/2 and k= 1 2 [ ( e 1 2 + e 2 2 ) 1/2 - e 1 ] 1/2 .
ε r (f) =1 f 0 ω p 2 ω(ωj Γ 0 ) ,
ε r (b) = i =1 4 f i ω p 2 ω i 2 ω 2 +jω Γ i ,
ε 1 =1 f 0 ω p 2 ω 2 + Γ 0 2 + i =1 4 f i ω p 2 ( ω i 2 ω 2 ) ( ω i 2 ω 2 ) 2 + ω 2 Γ i 2 ,
ε 2 = f 0 ω p 2 Γ 0 ω( ω 2 + Γ 0 2 ) + i=1 4 f i ω ω p 2 Γ i ( ω i 2 ω 2 ) 2 + ω 2 Γ i 2 .
ε eff = ε h pk( ε g ε h )+ ε g +k ε h ε g +k ε h +p( ε h ε g ) ,
σ eff = σ h pk( σ g σ h )+ σ g +k σ h σ g +k σ h +p( σ h σ g ) ,
σ h = [ σ g (1+pk) σ eff (p+k) ]+ [ σ g (1+pk) σ eff (p+k) ] 2 +4k (1p) 2 σ g σ eff 2k(1p) .

Metrics