Abstract

Ge20As20Se15Te45 chalcogenide glass was fabricated and systematically studied. This glass exhibits broad transmission range, high linear and non-linear refractive index, and good thermal stability. The low glass transition temperature allowed for the thermal nanoimprint to be accomplished directly on the bulk Ge20As20Se15Te45 glass to produce photonic crystals with a hybrid soft stamp. By optimizing the imprint conditions, uniform gratings with 500 nm depth grooves were fabricated by direct resist-free thermal nanoimprint lithography.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: a potential mid-infrared laser transmission medium

Jingxiang Su, Shixun Dai, Li Jiang, Changgui Lin, Chenfeng Yang, Nan Zhang, and Yuan Yuan
Opt. Mater. Express 9(7) 2859-2869 (2019)

Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography

Ting Han, Steve Madden, Douglas Bulla, and Barry Luther-Davies
Opt. Express 18(18) 19286-19291 (2010)

Sub-micrometer soft lithography of a bulk chalcogenide glass

Tomas Kohoutek, Jiri Orava, A. Lindsay Greer, and Hiroshi Fudouzi
Opt. Express 21(8) 9584-9591 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  5. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
    [Crossref]
  6. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  7. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
    [Crossref] [PubMed]
  8. V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
    [Crossref]
  9. K. Paivasaari, V. K. Tikhomirov, and J. Turunen, “High refractive index chalcogenide glass for photonic crystal applications,” Opt. Express 15(5), 2336–2340 (2007).
    [Crossref] [PubMed]
  10. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
    [Crossref]
  11. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref] [PubMed]
  12. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  13. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
    [Crossref]
  14. A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
    [Crossref]
  15. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [Crossref] [PubMed]
  16. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
    [Crossref]
  17. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
    [Crossref]
  18. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
    [Crossref]
  19. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
    [Crossref]
  20. M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
    [Crossref]
  21. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
    [Crossref] [PubMed]
  22. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
    [Crossref] [PubMed]
  23. J. Orava, T. Kohoutek, A. L. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1(5), 796–802 (2011).
    [Crossref]
  24. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
    [Crossref]
  25. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
    [Crossref] [PubMed]
  26. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [Crossref]
  27. Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
    [Crossref] [PubMed]
  28. C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
    [Crossref]
  29. X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).
  30. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
    [Crossref]
  31. X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
    [Crossref]
  32. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
    [Crossref] [PubMed]

2014 (1)

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

2013 (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

2011 (1)

2010 (4)

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
[Crossref] [PubMed]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

2009 (2)

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

2008 (3)

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

2007 (3)

2006 (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

2005 (1)

2004 (3)

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

2003 (3)

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

2002 (1)

2001 (2)

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

2000 (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Adawi, A. M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Aggarwal, I. D.

Ankiewicz, A.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

Ariu, M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Arsh, A.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Astratov, V. N.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Austin, M.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Barthelemy, A.

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Bulla, D.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

Bulla, D. A.

Charters, R.

Chen, F.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Chen, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Cheng, X.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

Choi, D.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

Choi, D. Y.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Chou, S.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Chou, S. Y.

X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
[Crossref]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Couderc, V.

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Cui, B.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Dai, S.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Eggleton, B. J.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Feigel, A.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Freeman, D.

Fu, Z.

X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
[Crossref]

Fudouzi, H.

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Ge, H.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Geng, J.

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Greer, A. L.

Gu, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Han, T.

Harbold, J. M.

Ilday, F. O.

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Ji, W.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Jiang, S.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Klebanov, M.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Kohoutek, T.

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Lewis, K. L.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Li, M.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Li, Z.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Li, Z. Y.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Liang, X.

X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
[Crossref]

Lidzey, D. G.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Lucas, J.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Lucas, P.

Luo, T.

Luther-Davies, B.

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref] [PubMed]

Lyon, S.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Lyubin, V.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Lyubin, V. M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Ma, H.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).

Madden, S.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref] [PubMed]

Madden, S. J.

Madsen, C. K.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

Mason, P. D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Nguyen, V. Q.

Nie, Q.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Orava, J.

Orchard, D. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Paivasaari, K.

Park, H.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

Pelusi, M. D.

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Reynolds, A. L.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Rode, A.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

Rode, A. V.

Sanghera, J. S.

Savage, J. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Schift, H.

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Sfez, B.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Shapiro, L.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Shaw, L. B.

Skolnik, M. S.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Smektala, F.

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Solmaz, M.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Ta’eed, V. G.

Tan, H.

X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
[Crossref]

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Tikhomirov, V. K.

K. Paivasaari, V. K. Tikhomirov, and J. Turunen, “High refractive index chalcogenide glass for photonic crystal applications,” Opt. Express 15(5), 2336–2340 (2007).
[Crossref] [PubMed]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Turunen, J.

van Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Veinger, M.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Wang, L.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Wang, R.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

Wang, R. P.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

Wang, X.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Wasserman, D.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Wegener, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Williams, R. S.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Wise, F. W.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wu, W.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Xia, Q.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Xu, T.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yang, Z.

Yi, C.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Yu, Z.

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

Yuan, C.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, M.

Zhang, P.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

Zhang, X.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).

Adv. Mater. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Appl. Phys. B (2)

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B 116(3), 653–658 (2014).
[Crossref]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scanmethod,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Appl. Phys. Lett. (2)

M. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004).
[Crossref]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, “Opal photonic crystals infiltrated with chalcogenide glasses,” Appl. Phys. Lett. 78(26), 4094–4096 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

IEEE Trans. NanoTechnol. (1)

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008).
[Crossref]

Infrared Phys. Technol. (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

J. Appl. Phys. (1)

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic trisulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[Crossref]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5(5), 1327–1333 (2003).

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

J. Vac. Sci. Technol. B (2)

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[Crossref]

Nano Lett. (1)

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubbleformation and dissolution in dispensing nanoimprint lithography,” Nanotechnology 18(2), 025303 (2007).
[Crossref]

Nat. Photonics (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26(3), 301–304 (2004).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a)Transmission spectrum and (b) refractive indices of Ge20As20Se15Te45 chalcogenide glass.
Fig. 2
Fig. 2 Linear thermal expansion property of Ge20As20Se15Te45 chalcogenide glass.
Fig. 3
Fig. 3 Closed-aperture Z-scans of the Ge20As20Se15Te45 glass at 3.5 μm.
Fig. 4
Fig. 4 (a) Structure of the hybrid stamp and (b–d) the schematic of the nanoimprint lithography.
Fig. 5
Fig. 5 Optical images of imprinted grating in Ge20As20Se15Te45 Chalcogenide glass: (a) magnified 2000 times and (b) magnified 4000 times.
Fig. 6
Fig. 6 Optical images of imprinted grating in Ge20As20Se15Te45 Chalcogenide glass: (a) magnified 2000 times and (b) magnified 4000 times.
Fig. 7
Fig. 7 Cross section profile of the prepared gratings.
Fig. 8
Fig. 8 XRD result of the original glass (black line) and the glass after thermal imprinting (black and red line).
Fig. 9
Fig. 9 The transmission spectrum at normal incidence.

Metrics