Abstract

We report Hf1-xTixO2 (0< = x< = 1) thin films (HTO) as index tunable and highly transparent materials for ultraviolet to near infrared integrated photonic devices. By varying the Ti concentration, reactive co-sputtered HTO thin films on thermal oxidized SiO2 on Si substrates show continuously tunable optical band gaps from 3.9 eV to larger than 5 eV. The film refractive index monotonically increases with Ti concentration, varying from 1.8 to 2.4 in the visible to near infrared wavelength range. Micro-disk amorphous HfO2 resonators on SiO2/Si substrates are fabricated using sputtering and lift-off method. A loaded quality factor of ~15800 at around 1580 nm wavelength is achieved in HfO2 disk resonators with diameters of 100 μm. The propagation loss of the HfO2 ridge waveguide is estimated to be 2.5 cm−1. The wide optical transparency range, variable index of refraction, low temperature, CMOS-compatible fabrication capability, and high optical transparency make amorphous HTO thin films promising candicates for integrated photonic applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics

Ningyuan Duan, Hongtao Lin, Lan Li, Juejun Hu, Lei Bi, Haipeng Lu, Xiaolong Weng, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 3(9) 1537-1545 (2013)

Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
    [Crossref]
  2. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2012).
    [Crossref] [PubMed]
  3. C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths,” Opt. Express 21(15), 18582–18591 (2013).
    [Crossref] [PubMed]
  4. T. H. Loh, Q. Wang, K. T. Ng, Y. C. Lai, and S. T. Ho, “CMOS compatible integration of Si/SiO2 multilayer GRIN lens optical mode size converter to Si wire waveguide,” Opt. Express 20(14), 14769–14778 (2012).
    [Crossref] [PubMed]
  5. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  6. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  7. C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
    [Crossref] [PubMed]
  8. J. P. Coutures and J. Coutures, “The system HfO2-TiO2,” J. Am. Ceram. Soc. 70(6), 383–387 (1987).
    [Crossref]
  9. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21(6), 6967–6972 (2013).
    [Crossref] [PubMed]
  10. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20(21), 23821–23831 (2012).
    [Crossref] [PubMed]
  11. C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
    [Crossref]
  12. G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
    [Crossref]
  13. O. Reshef, K. Shtyrkova, M. G. Moebius, S. Griesse-Nascimento, S. Spector, C. C. Evans, E. Ippen, and E. Mazur, “Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient,” J. Opt. Soc. Am. B 32(11), 2288–2293 (2015).
    [Crossref]
  14. T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
    [Crossref]
  15. C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
    [Crossref]
  16. Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
    [Crossref]
  17. J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).
  18. G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
    [Crossref]
  19. C. L. Wu, B. T. Chen, Y. Y. Lin, W. C. Tien, G. R. Lin, Y. J. Chiu, Y. J. Hung, A. K. Chu, and C. K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
    [Crossref] [PubMed]
  20. M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
    [Crossref]
  21. H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
    [Crossref]
  22. M. F. Al-Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy-efficient windows,” Opt. Mater. 27(3), 383–387 (2004).
    [Crossref]
  23. F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
    [Crossref]
  24. Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
    [Crossref]
  25. G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
    [Crossref]
  26. F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
    [Crossref]
  27. F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
    [Crossref]
  28. J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
    [Crossref]
  29. M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
    [Crossref]
  30. C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
    [Crossref]
  31. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland Publishing Company, 1977).
  32. J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surface amd Coatings Tech. 201, 3530–3535 (2006).
  33. F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

2015 (3)

2014 (4)

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
[Crossref]

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

2011 (4)

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

2007 (1)

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

2006 (4)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[Crossref]

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
[Crossref]

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

2005 (1)

T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
[Crossref]

2004 (3)

M. F. Al-Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy-efficient windows,” Opt. Mater. 27(3), 383–387 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

2003 (1)

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

2000 (1)

C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

1987 (1)

J. P. Coutures and J. Coutures, “The system HfO2-TiO2,” J. Am. Ceram. Soc. 70(6), 383–387 (1987).
[Crossref]

1977 (1)

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

Ahn, C. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Al-Kuhaili, M. F.

M. F. Al-Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy-efficient windows,” Opt. Mater. 27(3), 383–387 (2004).
[Crossref]

Ayguna, G.

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

Balog, M.

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

Bi, L.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Bin, X.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Boatner, L. A.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

Bohne, W.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Borkowska, A.

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

Bradley, J. D. B.

Budai, J. D.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

Burgess, I. B.

Campbell, S. A.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Cantasa, A.

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

Cárabe, J.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Cardenas, J.

Chen, B. T.

Chen, F.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Chen, H. S.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Chen, S.

C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

Chen, X. F.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Chen, X. S.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Chiles, J.

Chiu, Y. J.

Choy, J. T.

Chu, A. K.

Coutures, J.

J. P. Coutures and J. Coutures, “The system HfO2-TiO2,” J. Am. Ceram. Soc. 70(6), 383–387 (1987).
[Crossref]

Coutures, J. P.

J. P. Coutures and J. Coutures, “The system HfO2-TiO2,” J. Am. Ceram. Soc. 70(6), 383–387 (1987).
[Crossref]

Deng, B.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Deng, L.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Deotare, P. B.

Ding, Z. J.

Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Domaradzki, J.

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

Duan, N.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Evans, C. C.

Fathpour, S.

Gandía, J. J.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Gladfelter, W. L.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Griesse-Nascimento, S.

Guang-Lei, T.

T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
[Crossref]

Guha, B.

He, G.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Hella, C.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Ho, S. T.

Hong-Bo, H.

T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
[Crossref]

Hu, J.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Hung, Y. J.

Ippen, E.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[Crossref]

Jellison, G. E.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

Jeong, B.-S.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

Jia, C.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Jian-Da, S.

T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
[Crossref]

Jiang, F.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jiang, R.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Jursich, G.

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

Kaczmarek, D.

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

Khan, S.

Khoshman, J. M.

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surface amd Coatings Tech. 201, 3530–3535 (2006).

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kordesch, M. E.

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surface amd Coatings Tech. 201, 3530–3535 (2006).

Kueltzo, A.

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

Kumah, D.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Lai, Y. C.

Lee, C. K.

Li, L.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Li, S. L.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Lin, G. R.

Lin, H.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Lin, Y. Y.

Lipson, M.

Liu, D.-M.

C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

Loh, T. H.

Loncar, M.

Lu, H.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Lv, J. G.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Ma, C. Y.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Ma, J.

Mártil, I.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Martinez, F. L.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Mazur, E.

Miao, C. Y.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Michman, M.

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

Moebius, M. G.

Murphy, N. R.

M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
[Crossref]

Ng, K. T.

Ngai, J. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Norton, D. P.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

Padma Kumar, H.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Parsy, F.

Patai, S.

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

Peng, A.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Phillips, K. C.

Prociow, E.

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

Rabiei, P.

Ramana, C. V.

M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
[Crossref]

Reiner, J. W.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Reshef, O.

Röhrich, J.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Saravana Kumar, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Schieber, M.

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

Shi, X.

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Shtyrkova, K.

Simseka, Y.

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

Singh, M.

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

Solomon, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Spector, S.

Strub, E.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Sun, Z. Q.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Tao, Q.

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

Thomas, J. K.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Tien, W. C.

Ting, C.

C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

Toledano-Luque, M.

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Turan, R.

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

Vargas, M.

M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
[Crossref]

Vidya, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Vijayakumar, C.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Walker, F. J.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Wang, J.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Wang, Q.

Wang, W. J.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Weng, X.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Wu, C. L.

Xie, E.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Xie, J.

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Xiong, C.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Xu, T.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Ye, F.

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Zeng, Q. G.

Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
[Crossref]

Zhang, J. W.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Zhang, Q. Y.

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

Zhang, Z. M.

Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
[Crossref]

Zhou, L.

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

Chi. Phys. Lett. (1)

T. Guang-Lei, H. Hong-Bo, and S. Jian-Da, “Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy,” Chi. Phys. Lett. 22(7), 1787–1789 (2005).
[Crossref]

J. Alloys Compd. (1)

J. W. Zhang, G. He, L. Zhou, H. S. Chen, X. S. Chen, X. F. Chen, B. Deng, J. G. Lv, and Z. Q. Sun, “Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation,” J. Alloys Compd. 611, 253–259 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

J. P. Coutures and J. Coutures, “The system HfO2-TiO2,” J. Am. Ceram. Soc. 70(6), 383–387 (1987).
[Crossref]

J. Appl. Phys. (2)

C. Ting, S. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93(12), 9537 (2003).
[Crossref]

J. Electrochem. Soc. (1)

Q. Tao, A. Kueltzo, M. Singh, and G. Jursich, “Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O,” J. Electrochem. Soc. 158(2), G27–G33 (2011).
[Crossref]

J. Lightwave Technol. (1)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[Crossref]

J. Lumin. (1)

Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature,” J. Lumin. 118(2), 301–307 (2006).
[Crossref]

J. Non-Crystall. Solids (1)

J. Domaradzki, A. Borkowska, D. Kaczmarek, and E. Prociow, “Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements,” J. Non-Crystall. Solids 352(23–25), 2324–2327 (2006).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

F. L. Martinez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Journal of Asian Ceramic Societies (1)

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” Journal of Asian Ceramic Societies 3(1), 64–69 (2015).
[Crossref]

Microelectron. Eng. (2)

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics,” Microelectron. Eng. 72(1–4), 263–266 (2004).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3.devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (2)

M. F. Al-Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy-efficient windows,” Opt. Mater. 27(3), 383–387 (2004).
[Crossref]

M. Vargas, N. R. Murphy, and C. V. Ramana, “Structure and optical properties of nanocrystalline hafnium oxide thin films,” Opt. Mater. 37, 621–628 (2014).
[Crossref]

SPIE (1)

F. Jiang, N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, and L. Deng, “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics,” SPIE 8988, 89880S (2014).

Thin Solid Films (5)

C. Y. Ma, W. J. Wang, J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, “Structural, morphological, optical and photoluminescence properties of HfO2 thin films,” Thin Solid Films 545, 279–284 (2013).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41(3), 247–259 (1977).
[Crossref]

G. Ayguna, A. Cantasa, Y. Simseka, and R. Turan, “Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films,” Thin Solid Films 519(17), 5820–5825 (2011).
[Crossref]

C. Jia, E. Xie, A. Peng, R. Jiang, F. Ye, H. Lin, and T. Xu, “Photoluminescence and energy transfer of terbium doped titania film,” Thin Solid Films 496(2), 555–559 (2006).
[Crossref]

Other (2)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland Publishing Company, 1977).

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surface amd Coatings Tech. 201, 3530–3535 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) XRD spectrum of ZrO2 films deposited under different oxygen partial pressures (b) XRD spectrum of Hf1-xTixO2 thin films (c) AFM image of TiO2-doped HfO2 films. (d) AFM image of TiO2 films. Binding energy of (e) Hf 4f and (f) Ti 2p of Hf1-xTixO2 thin films with different Ti concentrations.
Fig. 2
Fig. 2 (a)(b)Optical transparency of ZTO thin films deposited on glass substrates. Measured and fitted ellipsometric parameters, (c) Ψ and (d) Δ, for HTO thin film. Optical constants of (e) pure HfO2 and (f) HTO films. films of different oxygen partial pressure,
Fig. 3
Fig. 3 (a) Cross-sectional SEM image of an amorphous HfO2 disk resonator (b) AFM image of the amorphous HfO2 rigde waveguide (c) Ex field of the fundamental TM mode simulated in a single mode HfO2 ridge waveguide at 1550 nm wavelength.
Fig. 4
Fig. 4 (a) Optical microscope image and (b) SEM image of HfO2 micro-disk resonators (c) Transmission spectrum of a HfO2 micro-disk resonator for the fundamental TM mode (d) The enlarged optical resonance peak near critical coupling at around 1580.2 nm wavelength.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(αhυ) 1/2 =B(hυ- E g )
α=[-1/t]ln[T/ (1-R) 2 ]
ρ= R P R S =tanψexp(iΔ)
n λ =A+ B λ 2 + C λ 4
k λ =D+ E λ 2 + F λ 4
Q in = 2 Q loaded 1+ T 0
FSR= λ r 2 n g L
α= 2π n g Q in λ r

Metrics