Abstract

Raman studies performed on different morphologies of CdS samples indicate an exciton-phonon interaction (EPI) that manifests at low temperatures by different enhancements in intensity of the Raman spectra in the Stokes and anti-Stokes branches. This effect, interpreted as stimulated Raman effect, is conditioned on the appearance and strength by the degree of overlap of the excitation laser light with the excitonic photoluminescence band. EPI is greatest in samples characterized by high light diffusing power, which means a long path of light into the sample and a great overlapping of the two optical fields, i.e., the pump laser and excitonic light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Advances in stimulated Raman scattering in nanostructures

Luigi Sirleto, Alessandro Vergara, and Maria Antonietta Ferrara
Adv. Opt. Photon. 9(1) 169-217 (2017)

Incoherent phonon population and exciton-exciton annihilation dynamics in monolayer WS2 revealed by time-resolved Resonance Raman scattering

Shuangping Han, Christoph Boguschewski, Yan Gao, Liantuan Xiao, Jingyi Zhu, and Paul H. M. van Loosdrecht
Opt. Express 27(21) 29949-29961 (2019)

Raman cooling of solids through photonic density of states engineering

Yin-Chung Chen and Gaurav Bahl
Optica 2(10) 893-899 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Zimmermann and C. Trallero-Giner, “Exciton-phonon resonance in the continuum absorption of bulk semiconductors,” Phys. Rev. B 56(15), 9488–9495 (1997).
    [Crossref]
  2. M. Takeshima and A. H. Matsui, “Suppression and enhancement of the exciton-phonon interaction in optical absorption spectra of Frenkel exciton microcrystallites,” J. Lumin. 82(3), 195–204 (1999).
    [Crossref]
  3. U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
    [Crossref]
  4. D. Roubtsov and Y. Lepine, “Bosons in a lattice: Exciton-phonon condensate in Cu2O,” Phys. Rev. B 61(8), 5237–5253 (2000).
    [Crossref]
  5. V. Pouthier, “Polaron-phonon interaction in a finite-size lattice: A perturbative approach,” Phys. Rev. B 84(13), 134301 (2011).
    [Crossref]
  6. A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
    [Crossref] [PubMed]
  7. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
    [Crossref] [PubMed]
  8. I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
    [Crossref]
  9. D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
    [Crossref]
  10. E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
    [Crossref]
  11. R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
    [Crossref]
  12. D. Olego and M. Cardona, “Raman Scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24(12), 7217–7232 (1981).
    [Crossref]
  13. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
    [Crossref]
  14. R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
    [Crossref]
  15. R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
    [Crossref]
  16. M. R. Wagner, P. Zimmer, A. Hoffmann, and C. Thomsen, “Resonant Raman scattering at exciton intermediate states in ZnO,” Phys. Stat Sol. 1(5), 169–171 (2007).
    [Crossref]
  17. C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).
  18. Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
    [Crossref]
  19. R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
    [Crossref]
  20. C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
    [Crossref]
  21. U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
    [Crossref]
  22. W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
    [Crossref]
  23. H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
    [Crossref]
  24. Y. Masumoto, T. Kawazoe, and N. Matsuura, “Exciton-confined-phonon interaction in quantum dots,” J. Lumin. 76-77, 189–192 (1998).
    [Crossref]
  25. M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
    [Crossref]
  26. Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).
  27. S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
    [Crossref]
  28. B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
    [Crossref] [PubMed]
  29. M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
    [Crossref]
  30. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
    [Crossref] [PubMed]
  31. Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
    [Crossref] [PubMed]
  32. K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
    [Crossref] [PubMed]
  33. S. A. Ivanov and M. Achermann, “Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals,” ACS Nano 4(10), 5994–6000 (2010).
    [Crossref] [PubMed]
  34. I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
    [Crossref] [PubMed]
  35. M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
    [Crossref]
  36. I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
    [Crossref]
  37. M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
    [Crossref]
  38. S. Nakashima and H. Harima, Raman Spectroscopy of Semiconductors (Wiley, 2006).
  39. T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
    [Crossref]
  40. R. Zeyher, “Theory of multiphonon raman spectra above the energy gap in semiconductors,” Solid State Commun. 16(1), 49–52 (1975).
    [Crossref]
  41. Y. R. Shen, The Principle of Nonlinear Optics (Wiley, 2003), Chap. 10.
  42. S. H. Guang, Nonlinear Optics and Photonics (Oxford University Press, 2015).
  43. T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).
  44. T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).
  45. X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
    [Crossref]
  46. J. Pollmann and H. Buttner, “Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors,” Phys. Rev. B 16(10), 4480–4490 (1977).
    [Crossref]

2016 (1)

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

2015 (2)

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

2014 (2)

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).

2013 (3)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).

2012 (4)

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

2011 (4)

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

V. Pouthier, “Polaron-phonon interaction in a finite-size lattice: A perturbative approach,” Phys. Rev. B 84(13), 134301 (2011).
[Crossref]

M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
[Crossref]

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

2010 (1)

S. A. Ivanov and M. Achermann, “Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals,” ACS Nano 4(10), 5994–6000 (2010).
[Crossref] [PubMed]

2008 (2)

I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
[Crossref] [PubMed]

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

2007 (1)

W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
[Crossref]

2005 (1)

I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
[Crossref]

2003 (1)

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

2001 (1)

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

2000 (4)

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

D. Roubtsov and Y. Lepine, “Bosons in a lattice: Exciton-phonon condensate in Cu2O,” Phys. Rev. B 61(8), 5237–5253 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

1999 (1)

M. Takeshima and A. H. Matsui, “Suppression and enhancement of the exciton-phonon interaction in optical absorption spectra of Frenkel exciton microcrystallites,” J. Lumin. 82(3), 195–204 (1999).
[Crossref]

1997 (2)

R. Zimmermann and C. Trallero-Giner, “Exciton-phonon resonance in the continuum absorption of bulk semiconductors,” Phys. Rev. B 56(15), 9488–9495 (1997).
[Crossref]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
[Crossref]

1996 (2)

I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
[Crossref]

H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
[Crossref]

1993 (1)

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

1990 (1)

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

1985 (1)

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

1981 (1)

D. Olego and M. Cardona, “Raman Scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24(12), 7217–7232 (1981).
[Crossref]

1978 (1)

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

1977 (1)

J. Pollmann and H. Buttner, “Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors,” Phys. Rev. B 16(10), 4480–4490 (1977).
[Crossref]

1975 (1)

R. Zeyher, “Theory of multiphonon raman spectra above the energy gap in semiconductors,” Solid State Commun. 16(1), 49–52 (1975).
[Crossref]

1969 (1)

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[Crossref]

1966 (1)

E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
[Crossref]

Achermann, M.

S. A. Ivanov and M. Achermann, “Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals,” ACS Nano 4(10), 5994–6000 (2010).
[Crossref] [PubMed]

Alves, J. M.

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

Araujo, P. T.

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

Arbiol, J.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Baibarac, M.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
[Crossref]

I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
[Crossref] [PubMed]

I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
[Crossref]

Baltog, I.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
[Crossref]

I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
[Crossref] [PubMed]

I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
[Crossref]

I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
[Crossref]

Balu, A. R.

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).

Baranov, A. V.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
[Crossref]

Bawendi, M. G.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Benndorf, G.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Bergues, J. M.

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

Brandt, M.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Brus, L. E.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Buttner, H.

J. Pollmann and H. Buttner, “Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors,” Phys. Rev. B 16(10), 4480–4490 (1977).
[Crossref]

Campoy, G.

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

Cardona, M.

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

D. Olego and M. Cardona, “Raman Scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24(12), 7217–7232 (1981).
[Crossref]

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Carroll, P. J.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Carvalho, B. R.

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

Chen, J. N.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Chen, R.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Chi, T. T. K.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Chia, C. H.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Chiou, J. W.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Chou, W.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Chuan, H.

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

Colomban, Ph.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Damen, T. C.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[Crossref]

de la Mata, M.

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Dietrich, C. P.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Dimastrodonato, V.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Doorn, S. K.

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

Dufåker, D.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Enculescu, M.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Fantini, C.

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

Fedorov, A. V.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
[Crossref]

Galatanu, M.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Gindele, F.

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

Gouadec, G.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Gross, E.

E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
[Crossref]

Grundmann, M.

C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Güntherodt, G.

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Han, T. C.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Hata, K.

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

Holtz, P. O.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Holtzberg, F.

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Hsieh, W. F.

W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
[Crossref]

Hsu, W. L.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Hsu, W. T.

W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
[Crossref]

Humphreys, R.

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Hvam, J. M.

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Inoue, K.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
[Crossref]

Ivanov, S. A.

S. A. Ivanov and M. Achermann, “Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals,” ACS Nano 4(10), 5994–6000 (2010).
[Crossref] [PubMed]

Jedju, T. M.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Jorio, A.

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

Juska, G.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Karlsson, K. F.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Kolliakos, S.

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

Kranert, C.

C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).

Kupper, J.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Langbein, W.

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

Lange, M.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Lefebvre, P.

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

Lefrant, S.

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
[Crossref]

I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
[Crossref] [PubMed]

I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
[Crossref]

I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
[Crossref]

Leite, R. C. C.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[Crossref]

Lepine, Y.

D. Roubtsov and Y. Lepine, “Bosons in a lattice: Exciton-phonon condensate in Cu2O,” Phys. Rev. B 61(8), 5237–5253 (2000).
[Crossref]

Li, D.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Liem, N. Q.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Lin, K. F.

W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
[Crossref]

Lin, Y. C.

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

Liu, X.

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Lorenz, M.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Lu, Y.

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Lyssenko, V. G.

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Malard, L. M.

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

Marín, J. L.

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

Massuyeau, F.

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

Mata, M.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Matsui, A. H.

M. Takeshima and A. H. Matsui, “Suppression and enhancement of the exciton-phonon interaction in optical absorption spectra of Frenkel exciton microcrystallites,” J. Lumin. 82(3), 195–204 (1999).
[Crossref]

Mazerolles, L.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Menéndez, J.

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

Menéndez-Proupin, E.

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

Mereni, L. O.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Merlin, R.

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Mihut, L.

I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
[Crossref]

Min, Z.

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

Mitran, R. A.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Nagarethinam, V. S.

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).

Oberhauser, D.

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Olego, D.

D. Olego and M. Cardona, “Raman Scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24(12), 7217–7232 (1981).
[Crossref]

Pantke, K.

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Pbrmogorov, S.

E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
[Crossref]

Pelucchi, E.

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

Peng, B.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Pimenta, M. A.

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

Ploog, K.

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

Pollmann, J.

J. Pollmann and H. Buttner, “Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors,” Phys. Rev. B 16(10), 4480–4490 (1977).
[Crossref]

Pouthier, V.

V. Pouthier, “Polaron-phonon interaction in a finite-size lattice: A perturbative approach,” Phys. Rev. B 84(13), 134301 (2011).
[Crossref]

Razbirin, B.

E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
[Crossref]

Riera, R.

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

Rodríguez-Suárez, R.

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

Rosas, R.

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

Rothberg, L.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Roubtsov, D.

D. Roubtsov and Y. Lepine, “Bosons in a lattice: Exciton-phonon condensate in Cu2O,” Phys. Rev. B 61(8), 5237–5253 (2000).
[Crossref]

Schmidt-Grund, R.

C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).

Scocioreanu, M.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Scott, J. F.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[Crossref]

Sivaraman, T.

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).

Smaranda, I.

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Sood, A. K.

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

Steigerwald, M. L.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Stolz, H.

H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
[Crossref]

Stölzel, M.

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Sum, T. C.

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Suryanarayanan, R.

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

Takeshima, M.

M. Takeshima and A. H. Matsui, “Suppression and enhancement of the exciton-phonon interaction in optical absorption spectra of Frenkel exciton microcrystallites,” J. Lumin. 82(3), 195–204 (1999).
[Crossref]

Taliercio, T.

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

Trallero-Giner, C.

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

R. Zimmermann and C. Trallero-Giner, “Exciton-phonon resonance in the continuum absorption of bulk semiconductors,” Phys. Rev. B 56(15), 9488–9495 (1997).
[Crossref]

Usharani, K.

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

Utama, M. I. B.

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Vogelsang, H.

H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
[Crossref]

von der Osten, W.

H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
[Crossref]

Wang, G.

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Weimann, G.

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Weiwei, X.

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

Wery, J.

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

Wilson, W. L.

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

Woggon, U.

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

Xiangdong, M.

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

Xianghua, Z.

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

Xiong, Q.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Zeyher, R.

R. Zeyher, “Theory of multiphonon raman spectra above the energy gap in semiconductors,” Solid State Commun. 16(1), 49–52 (1975).
[Crossref]

Zhang, J.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Zhang, Q.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Zhang, X. B.

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

Zimmermann, R.

R. Zimmermann and C. Trallero-Giner, “Exciton-phonon resonance in the continuum absorption of bulk semiconductors,” Phys. Rev. B 56(15), 9488–9495 (1997).
[Crossref]

ACS Nano (1)

S. A. Ivanov and M. Achermann, “Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals,” ACS Nano 4(10), 5994–6000 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. T. Hsu, K. F. Lin, and W. F. Hsieh, “Reduced exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett. 91(18), 181911 (2007).
[Crossref]

Z. Xianghua, H. Chuan, Z. Min, X. Weiwei, and M. Xiangdong, “Enhanced Raman spectroscopy induced by surface defects in ripple-like CdS microbelts,” Appl. Phys. Lett. 104(8), 081609 (2014).
[Crossref]

J. Appl. Phys. (3)

C. H. Chia, J. N. Chen, T. C. Han, J. W. Chiou, Y. C. Lin, W. L. Hsu, and W. Chou, “Size dependence of exciton-phonon coupling in sol-gel ZnMgO powders,” J. Appl. Phys. 109(6), 063526 (2011).
[Crossref]

M. Baibarac, F. Massuyeau, J. Wery, I. Baltog, and S. Lefrant, “Raman scattering and anti-Stokes luminescence in poly-paraphenylene vinylene-carbon nanotubes composites,” J. Appl. Phys. 111(8), 083109 (2012).
[Crossref]

M. Baibarac, I. Baltog, and S. Lefrant, “Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder,” J. Appl. Phys. 110(5), 053106 (2011).
[Crossref]

J. Lumin. (3)

H. Vogelsang, H. Stolz, and W. von der Osten, “Exciton-phonon coupling in indirect gap AgBr nanocrystals,” J. Lumin. 70(1–6), 414–420 (1996).
[Crossref]

M. Takeshima and A. H. Matsui, “Suppression and enhancement of the exciton-phonon interaction in optical absorption spectra of Frenkel exciton microcrystallites,” J. Lumin. 82(3), 195–204 (1999).
[Crossref]

I. Baltog, L. Mihut, and S. Lefrant, “Excitonic luminescence in CsPbCl3 crystals under intense excitation,” J. Lumin. 68(5), 271–277 (1996).
[Crossref]

J. Mat. Sci: Mater. Electrochem. (1)

T. Sivaraman, V. S. Nagarethinam, A. R. Balu, and K. Usharani, “Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine,” J. Mat. Sci: Mater. Electrochem. 71, 1158 (2016).

J. Phys. Chem. Solids (1)

E. Gross, S. Pbrmogorov, and B. Razbirin, “Free exciton motion in crystals and exciton-phonon interaction,” J. Phys. Chem. Solids 27(10), 1647–1651 (1966).
[Crossref]

J. Phys. Condens. Matter (3)

R. Riera, R. Rosas, J. L. Marín, J. M. Bergues, and G. Campoy, “Multiphonon resonant scattering in the semimagnetic semiconductor Cd1-xMnxTe: Frohlich and deformation potential exciton-phonon intercation,” J. Phys. Condens. Matter 15(19), 3225–3248 (2003).
[Crossref]

I. Baltog, M. Baibarac, and S. Lefrant, “Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra,” J. Phys. Condens. Matter 20(27), 275215 (2008).
[Crossref] [PubMed]

X. B. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, “Influence of electron-phonon interaction on the optical properties of III nitride semiconductors,” J. Phys. Condens. Matter 13(32), 7053–7074 (2001).
[Crossref]

J. Raman Spectrosc. (1)

T. T. K. Chi, G. Gouadec, Ph. Colomban, G. Wang, L. Mazerolles, and N. Q. Liem, “Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects,” J. Raman Spectrosc. 42(5), 1007–1015 (2011).
[Crossref]

Mater. Res. Bull. (1)

M. Baibarac, I. Smaranda, M. Scocioreanu, R. A. Mitran, M. Enculescu, M. Galatanu, and I. Baltog, “Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge,” Mater. Res. Bull. 70, 762–772 (2015).
[Crossref]

Nano Lett. (1)

Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt,” Nano Lett. 12(12), 6420–6427 (2012).
[Crossref] [PubMed]

Nature (1)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

C. Kranert, R. Schmidt-Grund, and M. Grundmann, “Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap,” New J. Phys. 15(113048), 1–22 (2013).

Phys. Rev. B (15)

R. Zimmermann and C. Trallero-Giner, “Exciton-phonon resonance in the continuum absorption of bulk semiconductors,” Phys. Rev. B 56(15), 9488–9495 (1997).
[Crossref]

R. Merlin, G. Güntherodt, R. Humphreys, M. Cardona, R. Suryanarayanan, and F. Holtzberg, “Multiphonon processes in YbS,” Phys. Rev. B 17(12), 4951–4958 (1978).
[Crossref]

D. Olego and M. Cardona, “Raman Scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24(12), 7217–7232 (1981).
[Crossref]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56(12), 7491–7502 (1997).
[Crossref]

R. Rodríguez-Suárez, E. Menéndez-Proupin, C. Trallero-Giner, and M. Cardona, “Multiphonon resonant Raman scattering in nanocrystals,” Phys. Rev. B 62(16), 11006–11016 (2000).
[Crossref]

D. Dufåker, K. F. Karlsson, L. O. Mereni, V. Dimastrodonato, G. Juska, E. Pelucchi, and P. O. Holtz, “Evidence of nonadiabatic exciton-phonon interaction probed by second-oredr LO-phonon replicas of single quantum dots,” Phys. Rev. B 87(8), 085317 (2013).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

D. Roubtsov and Y. Lepine, “Bosons in a lattice: Exciton-phonon condensate in Cu2O,” Phys. Rev. B 61(8), 5237–5253 (2000).
[Crossref]

V. Pouthier, “Polaron-phonon interaction in a finite-size lattice: A perturbative approach,” Phys. Rev. B 84(13), 134301 (2011).
[Crossref]

I. Baltog, M. Baibarac, and S. Lefrant, “Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons,” Phys. Rev. B 72(24), 245402 (2005).
[Crossref]

U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61(3), 1935–1940 (2000).
[Crossref]

M. Lange, J. Kupper, C. P. Dietrich, M. Brandt, M. Stölzel, G. Benndorf, M. Lorenz, and M. Grundmann, “Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells,” Phys. Rev. B 86(4), 045318 (2012).
[Crossref]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resoanant Raman spectroscopy,” Phys. Rev. B 85, 0854181 (2012).

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy,” Phys. Rev. B 78(16), 165408 (2008).
[Crossref]

J. Pollmann and H. Buttner, “Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors,” Phys. Rev. B 16(10), 4480–4490 (1977).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Pantke, D. Oberhauser, V. G. Lyssenko, J. M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 47(4), 2413–2416 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Phys. Rev. Lett. 114(13), 136403 (2015).
[Crossref] [PubMed]

A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. 54(19), 2111–2114 (1985).
[Crossref] [PubMed]

M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett. 65(13), 1623–1626 (1990).
[Crossref] [PubMed]

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-Phonon Resonant Raman Scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[Crossref]

Res. J. Mater. Sci. (1)

T. Sivaraman, A. R. Balu, and V. S. Nagarethinam, “CdS thin films fabricated by a simplified spray technique from different substrate temperatures – structural, morphological, optical and electrical analysis,” Res. J. Mater. Sci. 2, 6–15 (2014).

Solid State Commun. (1)

R. Zeyher, “Theory of multiphonon raman spectra above the energy gap in semiconductors,” Solid State Commun. 16(1), 49–52 (1975).
[Crossref]

Other (5)

Y. R. Shen, The Principle of Nonlinear Optics (Wiley, 2003), Chap. 10.

S. H. Guang, Nonlinear Optics and Photonics (Oxford University Press, 2015).

S. Nakashima and H. Harima, Raman Spectroscopy of Semiconductors (Wiley, 2006).

M. R. Wagner, P. Zimmer, A. Hoffmann, and C. Thomsen, “Resonant Raman scattering at exciton intermediate states in ZnO,” Phys. Stat Sol. 1(5), 169–171 (2007).
[Crossref]

Y. Masumoto, T. Kawazoe, and N. Matsuura, “Exciton-confined-phonon interaction in quantum dots,” J. Lumin. 76-77, 189–192 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Non-resonant (a) and resonant (b) Raman spectra under excitation light of 647.1 and 488 nm, respectively. In (c), the Raman spectrum is superimposed over the excitonic emission band.
Fig. 2
Fig. 2 Enhancement and modification of Stokes Raman spectra for a sample S2 under different excitation laser light superposed over the excitonic band. (a) Excitonic emission band at λexc = 458 nm at 300 and 88 K, red and blue curves, respectively. The five argon laser lines used for optical excitation are indicated by dashed lines. In (b; c; d; e; f) are shown the Stokes Raman spectra at 88 K of sample S2 under different excitation laser light, corresponding to the harmonics of higher order (610 cm−1, 915 cm−1, 1220−1cm) of the primary longitudinal optical phonon line at ΩLO = 305 cm−1.
Fig. 3
Fig. 3 Raman spectra of CdS (sample S2) at different temperatures (300 K, 198 K and 88 K) under excitation laser light of 488 nm.
Fig. 4
Fig. 4 (a) PL excitonic profile band at 88 K of CdS (sample S2,) over which are shown the laser excitation lines accompanied by Stokes Raman spectrum related fields (hatched area). (b) Raman intensity ratio I (300 cm−1)/I(Ω cm1) of CdS (sample S2) at 88K under different excitation laser light. Ω indicates the CdS Raman lines at 305, 610, 915, and 1220 cm−1.
Fig. 5
Fig. 5 (a) Emission band as sum of excitonic band and Raman spectrum of CdS (sample S2) under excitation laser light of 488 nm. (b) Ratio of temperature I(T)/I(300) associated with the intensities of Raman line at 305 cm−1 versus temperature determined under laser excitation light of 514.5, 496 and 488 nm, where T is a low given temperature and 300K is room temperature.
Fig. 6
Fig. 6 (a) PL excitonic band over which are marked excitation laser light at 514 and 488 nm, flanked by hatched areas associated with the Stokes (S) and anti-Stokes (aS) Raman branches. (b1; c1 and b2; c2) Raman line at 305 cm−1 of S2 sample in anti-Stokes and Stokes branch under excitation laser light at 488 and 514.5 nm, respectively. Black and red curves show the recorded Raman spectra and calculated replica with the Boltzmann formulae applied to the Stokes branch.
Fig. 7
Fig. 7 Influence of the sample morphology on the EPI that manifests in an enhancement of Raman intensity for the CdS samples labeled S1 (a), S2 (b) and S3 (c). Black curves show the emission spectra at 88 K that summarizes the excitonic PL band, over which the Raman contribution is superposed. Red curves are the Raman spectra obtained by subtraction of the PL band. Blue curves indicate two components in the PL band of sample S1. Insets show the optical microscopic backscattering images obtained using a 50X objective.
Fig. 8
Fig. 8 Intensity at 88 K of different Raman lines in S1, S2 and S3 CdS samples.
Fig. 9
Fig. 9 XRD patterns in the single crystal (a), powder (b) and film (c) of CdS samples.
Fig. 10
Fig. 10 Operating diagram of a stimulated Raman process.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P= P 0 + χ ( 1 ) E+ χ ( 2 ) EE+ χ ( 3 ) EEE+ . = P L + P NL
I aS I S =( σ ( α Ω ) aS σ ( α Ω ) S ) ( ω l +Ω ω l Ω ) 4 exp ( hΩ kT ) 1
F θ = [ 2π e 2 Ω V ( ε 1 ε 0 1 ) ] 1 2

Metrics