Abstract

A series of Ho3+/Yb3+-codoped Gd2O3 nanoparticles were prepared by a facile urea-based homogeneous precipitation method. Under the excitation of 980 nm light, all the samples exhibited strong green and red upconversion (UC) emissions corresponding to the (5F4,5S2) → 5I8 and 5F55I8 transitions of Ho3+ ions, respectively. A gradual enhancement in the UC emission intensity was observed with increasing the Yb3+ ion concentration, achieving its optimum value when the doping concentration was 3 mol%. In addition, with the introduction of Ho3+/Yb3+-codoped Gd2O3 nanoparticles into the TiO2 porous film of dye-sensitized solar cells (DSSCs), the power conversion efficiency of the cells (7.403%) was ~10.47% higher than that of the DSSCs with pure TiO2 porous film (6.701%), which is mainly caused by increased short-circuit current density due to their enhanced light-harvesting properties via an efficient UC process. The result suggested that the incorporation of upconverting nanoparticles into the TiO2 porous film is an effective approach to improve the photovoltaic characteristics of DSSCs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient luminescence enhancement of Gd2O3:Ln3+ (Ln = Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions

Daguang Li, Weiping Qin, Peng Zhang, Lili Wang, Min Lan, and Pengbo Shi
Opt. Mater. Express 7(2) 329-340 (2017)

Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3:Yb/Er) nanophosphors in solar cells

Xiao Jin, Haiyang Li, Dongyu Li, Qin Zhang, Feng Li, Weifu Sun, Zihan Chen, and Qinghua Li
Opt. Express 24(18) A1276-A1287 (2016)

BaZnLa2O5:Ho3+-Yb3+ phosphor for display and security ink application

Abhishek Kumar Soni and Vineet Kumar Rai
J. Opt. Soc. Am. B 31(9) 2201-2207 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [Crossref]
  2. J. H. Lim, Y. H. Ko, J. W. Leem, and J. S. Yu, “Improvement in light harvesting of dye-sensitized solar cells with antireflective and hydrophobic textile PDMS coating by facile soft imprint lithography,” Opt. Express 23(3), A169–A179 (2015).
    [Crossref] [PubMed]
  3. Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
    [Crossref] [PubMed]
  4. P. Ramasamy and J. Kim, “Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 50(7), 879–881 (2014).
    [Crossref] [PubMed]
  5. K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
    [Crossref] [PubMed]
  6. J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
    [Crossref]
  7. P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
    [Crossref]
  8. M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
    [Crossref]
  9. J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
    [Crossref] [PubMed]
  10. Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
    [Crossref] [PubMed]
  11. E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
    [Crossref]
  12. Z. Wu, Y. Zhang, G. Bai, W. Tang, J. Gao, and J. Hao, “Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films,” Opt. Express 22(23), 29014–29019 (2014).
    [Crossref] [PubMed]
  13. W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
    [Crossref]
  14. M. Kochanowicz, J. Zmojda, P. Miluski, J. Pisarska, W. A. Pisarski, and D. Dorosz, “NIR to visible upconversion in double-clad optical fiber co-doped with Yb3+/Ho3+,” Opt. Mater. Express 5(7), 1505–1510 (2015).
    [Crossref]
  15. F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
    [Crossref]
  16. Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
    [Crossref]
  17. G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
    [Crossref]
  18. Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).
  19. C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
    [Crossref]
  20. G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
    [Crossref] [PubMed]
  21. S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
    [Crossref]
  22. R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
    [Crossref]
  23. G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).
  24. Y. Qu, R. Wang, Z. Qiu, Y. Tao, and J. Zhou, “White-light upconversion emissions and color tenability of 12CaO·7Al2O3:Ho3+/Yb3+/Tm3+ single crystal,” Opt. Mater. Express 5(8), 1881–1889 (2015).
    [Crossref]
  25. G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
    [Crossref] [PubMed]

2015 (8)

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

J. H. Lim, Y. H. Ko, J. W. Leem, and J. S. Yu, “Improvement in light harvesting of dye-sensitized solar cells with antireflective and hydrophobic textile PDMS coating by facile soft imprint lithography,” Opt. Express 23(3), A169–A179 (2015).
[Crossref] [PubMed]

M. Kochanowicz, J. Zmojda, P. Miluski, J. Pisarska, W. A. Pisarski, and D. Dorosz, “NIR to visible upconversion in double-clad optical fiber co-doped with Yb3+/Ho3+,” Opt. Mater. Express 5(7), 1505–1510 (2015).
[Crossref]

Y. Qu, R. Wang, Z. Qiu, Y. Tao, and J. Zhou, “White-light upconversion emissions and color tenability of 12CaO·7Al2O3:Ho3+/Yb3+/Tm3+ single crystal,” Opt. Mater. Express 5(8), 1881–1889 (2015).
[Crossref]

2014 (9)

Z. Wu, Y. Zhang, G. Bai, W. Tang, J. Gao, and J. Hao, “Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films,” Opt. Express 22(23), 29014–29019 (2014).
[Crossref] [PubMed]

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

P. Ramasamy and J. Kim, “Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 50(7), 879–881 (2014).
[Crossref] [PubMed]

2012 (1)

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

2011 (3)

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

2009 (2)

F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
[Crossref]

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

2003 (1)

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

1991 (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Bai, G.

Bai, J.

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

Bao, D.

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

Bernstein, E.

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

Bu, C.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Capobianco, J. A.

F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
[Crossref]

Chen, B.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Chow, G. M.

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

Cui, C.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Dai, Y.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

Diao, G.

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

Ding, G.

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

Dorosz, D.

Gai, S.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Gao, F.

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

Gao, J.

Gao, W.

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

García-Murillo, A.

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

Grätzel, M.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Guo, S.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Han, G.

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

Han, G. S.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Han, Q.

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Han, S. H.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Hao, J.

Z. Wu, Y. Zhang, G. Bai, W. Tang, J. Gao, and J. Hao, “Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films,” Opt. Express 22(23), 29014–29019 (2014).
[Crossref] [PubMed]

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

He, E.

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

He, F.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Hu, H.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Huang, M.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Huang, P.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Huang, Y.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Ji, H.

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Jiang, X.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Jung, H. S.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Jung, M. K.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Kim, D. H.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Kim, J.

P. Ramasamy and J. Kim, “Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 50(7), 879–881 (2014).
[Crossref] [PubMed]

Kim, K.

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Kim, Y.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Ko, M. J.

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Ko, Y. H.

Kochanowicz, M.

Lan, Z.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Lee, D. G.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Lee, K.

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Lee, M. J.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Leem, J. W.

Li, C.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Li, R.

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Li, W.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

Li, X.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Li, Z.

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Lim, J. H.

Lin, J.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Liu, H.

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Liu, L.

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Liu, M.

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

Liu, Q.

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Liu, W.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Liu, Y.

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

Lu, W.

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Luo, L.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

Lv, R.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

Lyuer, C. L.

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

Mahalingam, V.

F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
[Crossref]

Miluski, P.

Mugnier, J.

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

Nan, F.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Niu, N.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Oh, J.

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

Park, N. G.

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Park, S. W.

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Pavitra, E.

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

Pisarska, J.

Pisarski, W. A.

Qiu, Z.

Qu, Y.

Raju, G. S. R.

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

Ramasamy, P.

P. Ramasamy and J. Kim, “Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 50(7), 879–881 (2014).
[Crossref] [PubMed]

Rao, L.

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Sato, T.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Shen, J.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Song, Y. H.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Tang, W.

Tao, Y.

Tian, B.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Tian, Y.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Vetrone, F.

F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
[Crossref]

Wang, D.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Wang, H.

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Wang, J.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Wang, L.

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

Wang, R.

Y. Qu, R. Wang, Z. Qiu, Y. Tao, and J. Zhou, “White-light upconversion emissions and color tenability of 12CaO·7Al2O3:Ho3+/Yb3+/Tm3+ single crystal,” Opt. Mater. Express 5(8), 1881–1889 (2015).
[Crossref]

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Wu, G.

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

Wu, J.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Wu, Z.

Xiao, Y.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Xie, Z. B.

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

Yang, G.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

Yang, P.

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Yang, X.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Yao, Y.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

Yi, Z.

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Yin, S.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Yoon, D. H.

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Yu, J. S.

J. H. Lim, Y. H. Ko, J. W. Leem, and J. S. Yu, “Improvement in light harvesting of dye-sensitized solar cells with antireflective and hydrophobic textile PDMS coating by facile soft imprint lithography,” Opt. Express 23(3), A169–A179 (2015).
[Crossref] [PubMed]

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

Yu, Z.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Yue, G.

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

Zeng, S.

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Zhang, L.

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

Zhang, Q.

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, B.

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

Zhao, P.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Zhao, X. Z.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Zheng, H.

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Zhou, J.

Zhou, Z.

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Zhu, G.

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

Zhu, Y.

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

Zmojda, J.

Zuo, Q.

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Z. Yi, S. Zeng, W. Lu, H. Wang, L. Rao, H. Liu, and J. Hao, “Synergistic Dual-Modality in Vivo upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF4:Er Nanoprobes,” ACS Appl. Mater. Interfaces 6(6), 3839–3846 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

P. Ramasamy and J. Kim, “Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 50(7), 879–881 (2014).
[Crossref] [PubMed]

Chem. Mater. (1)

F. Vetrone, V. Mahalingam, and J. A. Capobianco, “Near-Infrared-to-Blue Upcnversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals,” Chem. Mater. 21(9), 1847–1851 (2009).
[Crossref]

ChemSusChem (1)

J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, “Application of Y2O3:Er3+ nanorods in Dye-Sensitized Solar Cells,” ChemSusChem 5(7), 1307–1312 (2012).
[Crossref] [PubMed]

CrystEngComm (2)

W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrodes under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable sized and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Inorg. Chem. (1)

G. Yang, R. Lv, S. Gai, Y. Dai, F. He, and P. Yang, “Multifunctional SiO2@Gd2O3:Yb/Tm Hollow Capsules: Controllable Synthesis and Drug Release Properties,” Inorg. Chem. 53(20), 10917–10927 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys. 118(4), 044101 (2015).
[Crossref]

G. Ding, F. Gao, G. Wu, and D. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi3Ti3O12 ferroelectric thin films,” J. Appl. Phys. 109(12), 123101 (2011).
[Crossref]

J. Colloid Interface Sci. (1)

G. Zhu, H. Wang, Q. Zhang, and L. Zhang, “Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes,” J. Colloid Interface Sci. 451, 15–20 (2015).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, and C. Li, “Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites,” J. Mater. Chem. A Mater. Energy Sustain. 2(39), 16523–16530 (2014).
[Crossref]

J. Raman Spectrosc. (1)

C. L. Lyuer, A. García-Murillo, E. Bernstein, and J. Mugnier, “Waveguide Raman spectroscopy of sol-gel Gd2O3 thin films,” J. Raman Spectrosc. 34(3), 234–239 (2003).
[Crossref]

Nanoscale (1)

Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, and X. Z. Zhao, “Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles,” Nanoscale 6(4), 2052–2055 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film,” Nat. Mater. 8(8), 665–671 (2009).
[Crossref] [PubMed]

Nature (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

New J. Chem. (2)

E. Pavitra, G. S. R. Raju, J. Oh, and J. S. Yu, “Pump power induced tunable upconverison emission from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors,” New J. Chem. 38(8), 3413–3420 (2014).
[Crossref]

R. Li, H. Ji, Z. Li, J. Wang, Q. Liu, and L. Liu, “Fabrication and markedly enhanced white upconversion emission of core-shell structured NaGdF4:Tm3+/Yb3+/Ho3+@SiO2,” New J. Chem. 38(2), 611–615 (2014).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

RSC Advances (1)

J. Bai, B. Zhao, G. Han, Z. Li, and G. Diao, “Synthesis of 1D upconversion CeO2:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cell,” RSC Advances 5(54), 43328–43333 (2015).
[Crossref]

RSC. Adv. (2)

Y. Tian, B. Tian, C. Cui, P. Huang, L. Wang, and B. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC. Adv. 5, 14123–14128 (2015).

G. S. Han, Y. H. Song, D. H. Kim, M. J. Lee, D. G. Lee, S. H. Han, Y. Kim, M. K. Jung, D. H. Yoon, and H. S. Jung, “Green-emitting Lu3Al5O12:Ce3+ Phosphor as a visible light amplifier for dye-sensitized solar cells,” RSC. Adv. 5, 24737–24741 (2015).

Sol. Energy Mater. Sol. Cells (1)

M. Liu, Y. Liu, Z. B. Xie, and G. M. Chow, “Enhancing near-infrared solar cell response using upconverting transparent ceramics,” Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) XRD patterns of Gd2O3:0.01Ho3+/xYb3+ (x = 0.01, 0.02, 0.03 and 0.04) nanoparticles sintered at 800 °C. (b) Magnified XRD patterns in the 2θ range between 44 and 52°.
Fig. 2
Fig. 2 FE-SEM images of Gd2O3:0.01Ho3+/xYb3+ nanoparticles: (a) x = 0.01, (b) x = 0.02, (c) x = 0.03 and (d) x = 0.04.
Fig. 3
Fig. 3 FE-SEM images of (a) as-prepared precursor (Gd(OH)CO3:0.01Ho3+/0.03Yb3+) and (b) Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles sintered at 800 °C.
Fig. 4
Fig. 4 (a) TEM image and (b) HR-TEM image of Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles. (c) Elemental mappings of Gd, Ho, Yb and O. Inset of (b) shows the STEM image of Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles.
Fig. 5
Fig. 5 (a) UC emission spectrum of Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles. (b) UC emission intensity as a function of Yb3+ ion concentration. (c) Simplified energy level diagram of Ho3+ and Yb3+ ions. Inset of (a) shows the luminescence image excited by 980 nm light.
Fig. 6
Fig. 6 FE-SEM images of the surface of (a) pure TiO2 porous film and (b) hybrid TiO2 porous film with Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles.
Fig. 7
Fig. 7 (a) J-V curves and (b) IPCE spectra of the DSSCs with and without Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles.

Tables (2)

Tables Icon

Table 1 Structural parameters of Gd2O3 host lattice and Gd2O3:0.01Ho3+/xYb3+ (x = 0.01, 0.02, 0.03 and 0.04) nanoparticles

Tables Icon

Table 2 Photovoltaic parameters of DSSCs without and with addition of Gd2O3:0.01Ho3+/0.03Yb3+ nanoparticles.

Metrics