Abstract

A unique device to enhance the fluorescence excitation with a maximum signal gain of 15-fold is demonstrated here. A one-dimensional photonic crystal infiltrated with liquid crystal as a central defect layer is designed for the enhancement of multiphoton fluorescence. Based on the linear dispersion properties near the edge of photonic bandgap, compression of femtosecond laser pulses can be realized. In comparison to the typical fluorescence enhancement techniques, this novel method has easy on-chip compression of an excitation pulse, tunable device, bio-friendly design, low damage, and compensation-free characteristics. The photonic bandgap structure employed in this approach has tunable and strong enhancements in fluorescence that enable these devices to find a place in bio-imaging and biophotonic technologies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer

Hsiao-Tsung Wang, Jia-De Lin, Chia-Rong Lee, and Wei Lee
Opt. Lett. 39(12) 3516-3519 (2014)

Thermodielectric generation of defect modes in a photonic liquid crystal

Yu-Cheng Hsiao, Hsiao-Tsung Wang, and Wei Lee
Opt. Express 22(3) 3593-3599 (2014)

Reshaping of Gaussian light pulses transmitted through one-dimensional photonic crystals with two defect layers

Yu. S. Dadoenkova, N. N. Dadoenkova, I. L. Lyubchanskii, and D. I. Sementsov
Appl. Opt. 55(14) 3764-3770 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  4. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
    [Crossref] [PubMed]
  5. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
    [Crossref] [PubMed]
  6. G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
    [Crossref] [PubMed]
  7. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  8. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
    [Crossref] [PubMed]
  9. M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
    [Crossref] [PubMed]
  10. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  12. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
    [Crossref] [PubMed]
  13. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
    [Crossref] [PubMed]
  14. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
    [Crossref]
  15. J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33(15), 1729–1731 (2008).
    [Crossref] [PubMed]
  16. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
    [Crossref]
  17. E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
    [Crossref] [PubMed]
  18. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
    [Crossref]
  19. A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
    [PubMed]
  20. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
    [Crossref]
  21. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  22. S. Isaacs, F. Placido, and I. Abdulhalim, “Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53(29), H91–H101 (2014).
    [Crossref] [PubMed]
  23. S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
    [Crossref]
  24. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]

2014 (2)

S. Isaacs, F. Placido, and I. Abdulhalim, “Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53(29), H91–H101 (2014).
[Crossref] [PubMed]

S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
[Crossref]

2013 (1)

2012 (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (1)

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

2008 (1)

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2004 (1)

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[Crossref] [PubMed]

2003 (2)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (1)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

2001 (2)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref] [PubMed]

1999 (3)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

1998 (1)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

1996 (1)

1995 (1)

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Abdulhalim, I.

S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
[Crossref]

S. Isaacs, F. Placido, and I. Abdulhalim, “Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53(29), H91–H101 (2014).
[Crossref] [PubMed]

Andreev, A. V.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Balakin, A. V.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Bashir, R.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

Boucher, D.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Brakenhoff, G. J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
[Crossref] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Chan, V.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Chaudhery, V.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Chen, C.-H.

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Cunningham, B. T.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Descrovi, E.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Fedyanin, A. A.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Giorgis, F.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Hell, S. W.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref] [PubMed]

Hou, C.-T.

Hsiao, Y.-C.

Isaacs, S.

S. Isaacs, F. Placido, and I. Abdulhalim, “Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53(29), H91–H101 (2014).
[Crossref] [PubMed]

S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
[Crossref]

Ishikawa, M.

J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33(15), 1729–1731 (2008).
[Crossref] [PubMed]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

Kohl, A.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Koroteev, N. I.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Lee, W.

Lidstone, E. A.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Magnitskii, S. A.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

Masselin, P.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

McConnell, G.

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[Crossref] [PubMed]

Mouret, G.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Müller, M.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
[Crossref] [PubMed]

Nakatsuka, H.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref] [PubMed]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

Ozheredov, I. A.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Placido, F.

S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
[Crossref]

S. Isaacs, F. Placido, and I. Abdulhalim, “Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53(29), H91–H101 (2014).
[Crossref] [PubMed]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Riis, E.

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[Crossref] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Schook, L. B.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Shkurinov, A. P.

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

Soboleva, I. V.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
[Crossref] [PubMed]

Summonte, C.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Tarasishin, A. V.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

Timofeev, I. V.

Tsurumachi, N.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wolf-Jensen, T.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Wolleschensky, R.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

Wu, C.-Y.

Xu, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamane, Y.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

Ye, J. Y.

J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33(15), 1729–1731 (2008).
[Crossref] [PubMed]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

Zheltikov, A. M.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Zou, Y.-H.

Zyryanov, V. Ya.

Analyst (Lond.) (1)

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst (Lond.) 136(18), 3608–3615 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75(23), 3605–3607 (1999).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[Crossref]

Biophys. J. (2)

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[Crossref] [PubMed]

J. Microsc. (1)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(2), L1482–L1484 (2002).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159(1-3), 191–202 (1999).
[Crossref]

Opt. Eng. (1)

S. Isaacs, F. Placido, and I. Abdulhalim, “Fiber-coupled polarization independent liquid crystal Fabry–Perot tunable filter,” Opt. Eng. 53(4), 047101 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016602 (2001).
[PubMed]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Science (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) the schematic diagram and the structure of the 1D PC/LC devices, (b) actual pictures and specifications of device, (c) the SEM image of the PC (one side), (d) the transmission spectrum of the pure PC (black) and PC/LC device (red), and (e) the reorientation of the LC molecules and the corresponding refractive indices for TM and TE polarizations.
Fig. 2
Fig. 2 (a) the transmission spectra of the 1D PC/LC devices at various applying voltages when the defect layer is 1-μm thick, in TEF mode; (b) and (c) are respectively the transmission spectra when the thickness is 5 and 15 μm, and the photoluminescence spectra of the two fluorescent channels are also inserted. 15-μm thick sample operates in the SEF mode; (d) and (e) are FDTD simulations of electromagnetic wave of the used pulse duration 100 fs for TE and TM waves in 5 μm cell gap, respectively.
Fig. 3
Fig. 3 (a) the system design of homemade optical autocorrector in microscopy. HW stands for half-wave plates, LP stands for linear polarizers, QW stands for quarter-wave plates, M stands for mirrors, B stands for a beam splitter, L stands for lenses, O stands for the objective, D stands for dichroic mirrors, and F stands for filters; (b) and (c) are the autocorrection traces without and with the devices applied 80 mW; (d) pulse duration versus applied powers.
Fig. 4
Fig. 4 (a) the red and (b) the green fluorescent ball images at different excitation power with (left) and without (right) the PC/LC. The images of (c) the red and (d) the green fluorescent images at different illumination time with and without the PC/LC. The PC/LC device was operating in TEF mode.

Metrics