Abstract

La3GaGe5O16:Tb3+ phosphors deliver a long color-tuning persistent luminescence arising from the defect related emission and the 4f - 4f transitions of Tb3+. The persistent luminescence color was tuned by changing the doping Tb3+ concentration. The effect of the different atmospheres on the persistent luminescence of Tb3+-doped La3GaGe5O16 was investigated. Furthermore, we modified the composition around Tb3+ by adjusting the Ge/O content and improved the performance of persistent luminescence of the La3GaGe5O16:Tb3+. The samples synthesized in the poor-oxygen atmosphere most likely exhibited more exceptional persistent phosphorescence by enhancing the oxygen vacancies. To gain insight into the trapping and releasing processes involved in the persistent luminescence, we conducted a series of TL measurements by combining with the first-principles theory calculation. In addition, more investigations were carried out to unravel the nature of traps and also to verify the rationality of the material design.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
La3GaGe5O16:Cr3+ phosphor: the near-infrared persistent luminescence

Shaoan Zhang, Yihua Hu, Li Chen, Yinrong Fu, and Guifang Ju
Opt. Mater. Express 6(4) 1247-1255 (2016)

Influence of oxygen vacancy on persistent luminescence in ZnGa2O4:Cr3+ and identification of electron carriers

J. Su, S. Ye, X. Yi, F. Q. Lu, X. B. Yang, and Q. Y. Zhang
Opt. Mater. Express 7(3) 734-743 (2017)

Persistent luminescence behavior of materials doped with Eu2+ and Tb3+

Lucas C. V. Rodrigues, Hermi F. Brito, Jorma Hölsä, and Mika Lastusaari
Opt. Mater. Express 2(4) 382-390 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  2. J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er(3+)/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
    [Crossref] [PubMed]
  3. P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
    [Crossref] [PubMed]
  4. J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
    [Crossref]
  5. X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
    [Crossref] [PubMed]
  6. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
    [Crossref] [PubMed]
  7. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
    [Crossref] [PubMed]
  8. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [Crossref] [PubMed]
  9. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  10. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
    [Crossref] [PubMed]
  11. R. Bowers and N. T. Melamed, “Luminescent centers in ZnS: Cu: Cl phosphors,” Phys. Rev. 99(6), 1781–1787 (1955).
    [Crossref]
  12. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  13. B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
    [Crossref]
  14. Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
    [Crossref]
  15. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  16. X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
    [Crossref]
  17. Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
    [Crossref]
  18. Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
    [Crossref]
  19. R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
    [Crossref]
  20. S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
    [Crossref]
  21. S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
    [Crossref]
  22. Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
    [Crossref]
  23. Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
    [Crossref]
  24. P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+, Dy3+,” Phys. Status Solidi, B Basic Res. 242(1), R7–R9 (2005).
    [Crossref]
  25. A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
    [Crossref]
  26. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
    [Crossref]
  27. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  28. G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys. Condens. Matter 6(40), 8245–8257 (1994).
    [Crossref]
  29. J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
    [Crossref]
  30. P. Dorenbos, ““Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys-Condense Mat. 15(49), 8417 (2003).
  31. H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
    [Crossref]
  32. K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  33. S. W. S. McKeever, Thermoluminescence of Solids, Chapter 3 (Cambridge University Press 1985), pp 64–115.
  34. A. J. J. Bos, “Theory of Thermoluminescence,” Radiat. Meas. 41, S45–S56 (2006).
    [Crossref]
  35. L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
    [Crossref]
  36. P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd. 488(2), 568–573 (2009).
    [Crossref]
  37. Y. H. Lee and J. W. Corbett, “EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes,” Phys. Rev. B 13(6), 2653–2666 (1976).
    [Crossref]
  38. C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
    [Crossref]
  39. L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
    [Crossref]
  40. H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
    [Crossref]
  41. H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
    [Crossref]
  42. C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys. 95(8), 3851–3879 (2004).
    [Crossref]

2016 (2)

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

2015 (8)

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er(3+)/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

2014 (4)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

2013 (2)

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

2012 (3)

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
[Crossref]

2010 (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2009 (1)

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd. 488(2), 568–573 (2009).
[Crossref]

2008 (4)

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

2007 (1)

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

2006 (2)

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

A. J. J. Bos, “Theory of Thermoluminescence,” Radiat. Meas. 41, S45–S56 (2006).
[Crossref]

2005 (2)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+, Dy3+,” Phys. Status Solidi, B Basic Res. 242(1), R7–R9 (2005).
[Crossref]

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

2004 (1)

C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys. 95(8), 3851–3879 (2004).
[Crossref]

2003 (1)

P. Dorenbos, ““Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys-Condense Mat. 15(49), 8417 (2003).

1996 (2)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1994 (1)

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys. Condens. Matter 6(40), 8245–8257 (1994).
[Crossref]

1976 (1)

Y. H. Lee and J. W. Corbett, “EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes,” Phys. Rev. B 13(6), 2653–2666 (1976).
[Crossref]

1969 (1)

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

1955 (1)

R. Bowers and N. T. Melamed, “Luminescent centers in ZnS: Cu: Cl phosphors,” Phys. Rev. 99(6), 1781–1787 (1955).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Averseng, F.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Bazer-Bachi, D.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Bos, A. J.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Bos, A. J. J.

A. J. J. Bos, “Theory of Thermoluminescence,” Radiat. Meas. 41, S45–S56 (2006).
[Crossref]

Bowers, R.

R. Bowers and N. T. Melamed, “Luminescent centers in ZnS: Cu: Cl phosphors,” Phys. Rev. 99(6), 1781–1787 (1955).
[Crossref]

Brito, H. F.

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

Casale, S.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Chen, H.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Chen, L.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

Chen, R.

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

Chen, X. S.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

Chizallet, C.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Corbett, J. W.

Y. H. Lee and J. W. Corbett, “EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes,” Phys. Rev. B 13(6), 2653–2666 (1976).
[Crossref]

Costentin, G.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Dong, Y. Z.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

Dorenbos, P.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd. 488(2), 568–573 (2009).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+, Dy3+,” Phys. Status Solidi, B Basic Res. 242(1), R7–R9 (2005).
[Crossref]

P. Dorenbos, ““Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys-Condense Mat. 15(49), 8417 (2003).

Dou, R.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Drouilly, C.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Duan, H.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

Evans, S. M.

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Felinto, M. C.

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

Freysoldt, C.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Gao, X.

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Giles, N. C.

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Gilliam, O. R.

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Grabowski, B.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

Hafner, J.

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys. Condens. Matter 6(40), 8245–8257 (1994).
[Crossref]

Halliburton, L. E.

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Hannah, M. E.

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

Happek, U.

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

He, S.

Hellebust, A.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Hickel, T.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

Hölsä, J.

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

Hu, Y. H.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

Huang, Q.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Huang, Y.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

Ichihara, T.

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

Janotti, A.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

Jiang, L.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Jin, H. Y.

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

Jin, Y. H.

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

Ju, G. F.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

Ju, Z.

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Kakihana, M.

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

Kappers, L. A.

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Kawahara, Y.

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

Kijima, N.

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

Krafft, J. M.

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

Kresse, G.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys. Condens. Matter 6(40), 8245–8257 (1994).
[Crossref]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Kuroishi, K.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Lastusaari, M.

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

Lee, Y. H.

Y. H. Lee and J. W. Corbett, “EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes,” Phys. Rev. B 13(6), 2653–2666 (1976).
[Crossref]

Li, C.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Li, N.

Lin, H.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Lin, J.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Lin, Y.

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
[Crossref]

Lin, Z.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, J.

Liu, W.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lu, X.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Ma, T.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Maryško, M.

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Melamed, N. T.

R. Bowers and N. T. Melamed, “Luminescent centers in ZnS: Cu: Cl phosphors,” Phys. Rev. 99(6), 1781–1787 (1955).
[Crossref]

Mou, Z. F.

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Neugebauer, J.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys. 95(8), 3851–3879 (2004).
[Crossref]

Nie, Z.

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Petrykin, V.

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

Pham, H. L.

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

Pittet, M. J.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Prasad, P. N.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Qiu, J.

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

Qu, B. Y.

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

Ren, X.

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Richards-Kortum, R.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Rodrigues, L. C.

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

Setlur, A. A.

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

Shea, K. J.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Shi, X.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Smet, P. F.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Song, Y.

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Srivastava, A. M.

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Tang, Z.

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
[Crossref]

Tukia, M.

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

Ueda, J.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Van de Walle, C. G.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys. 95(8), 3851–3879 (2004).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Wang, B.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Wang, L.

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

Wang, M.

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Wang, P.

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

Wang, T.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Wang, X. J.

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Wang, Y.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Wang, Z.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Wang, Z. H.

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

Wei, R.

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Weissleder, R.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

Wu, H. Y.

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

Wu, R.

Xu, J.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

Xu, X.

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

Yang, P.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Yu, X.

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

Zeng, X. C.

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

Zhan, Q.

Zhang, B.

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

Zhang, J.

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Zhang, S.

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Zhang, S. A.

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Zhang, X.

Zhang, Z.

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
[Crossref]

Zheng, J.

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Zhou, D.

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Zhou, R. L.

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

ACS Appl. Mater. Inter. (1)

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED,” ACS Appl. Mater. Inter. 7(39), 21835–21843 (1969).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Shi, R. Dou, T. Ma, W. Liu, X. Lu, K. J. Shea, Y. Song, and L. Jiang, “Bioinspired lotus-like self-illuminous coating,” ACS Appl. Mater. Interfaces 7(33), 18424–18428 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

X. Zhang, J. Zhang, Z. Nie, M. Wang, X. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett. 90(15), 151911 (2007).
[Crossref]

Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu, “Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4,” Appl. Phys. Lett. 98(12), 121906 (2011).
[Crossref]

Biomed. Opt. Express (1)

Chem. Mater. (2)

Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, and M. Kakihana, “Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method,” Chem. Mater. 18(26), 6303–6307 (2006).
[Crossref]

B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou, and X. C. Zeng, “Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd,” Chem. Mater. 27(6), 2195–2202 (2015).
[Crossref]

Chem. Rev. (1)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Inorg. Chem. (1)

P. Wang, X. Xu, D. Zhou, X. Yu, and J. Qiu, “Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu(2+),Dy(3+) phosphor,” Inorg. Chem. 54(4), 1690–1697 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd. 488(2), 568–573 (2009).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, G. F. Ju, and Z. F. Mou, “Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3:Pr3+,” J. Am. Ceram. Soc. 96(12), 3821–3827 (2013).
[Crossref]

J. Appl. Phys. (2)

A. A. Setlur, A. M. Srivastava, H. L. Pham, M. E. Hannah, and U. Happek, “Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7:Eu2+, RE3+,” J. Appl. Phys. 103(5), 053513 (2008).
[Crossref]

C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys. 95(8), 3851–3879 (2004).
[Crossref]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

L. C. Rodrigues, J. Hölsä, M. Lastusaari, M. C. Felinto, and H. F. Brito, “Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1612–1618 (2014).
[Crossref]

J. Phys-Condense Mat. (1)

P. Dorenbos, ““Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys-Condense Mat. 15(49), 8417 (2003).

J. Phys. Chem. C (1)

C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C 116(40), 21297–21307 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys. Condens. Matter 6(40), 8245–8257 (1994).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D Appl. Phys. 49(2), 025304 (2016).
[Crossref]

J. Solid State Chem. (1)

J. Hölsä, M. Lastusaari, M. Maryško, and M. Tukia, “A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions,” J. Solid State Chem. 178(2), 435–440 (2005).
[Crossref]

Mater. Lett. (1)

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2011).
[Crossref]

Materials (Basel) (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Nano Lett. (1)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nature (1)

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[Crossref] [PubMed]

Nucl. Instrum. Meth. B (1)

L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, “EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO,” Nucl. Instrum. Meth. B 266(12-13), 2953–2957 (2008).
[Crossref]

Opt. Mater. (2)

Y. H. Jin, Y. H. Hu, L. Chen, and X. J. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9: R3+ (R = Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater. 36(11), 1814–1818 (2014).
[Crossref]

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, Z. H. Wang, and J. Lin, “Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+,” Opt. Mater. 47, 203–210 (2015).
[Crossref]

Phys. Lett. A (1)

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “The important role of oxygen vacancies in Sr2MgSi2O7 phosphor,” Phys. Lett. A 380(9–10), 1056–1062 (2016).
[Crossref]

Phys. Rev. (1)

R. Bowers and N. T. Melamed, “Luminescent centers in ZnS: Cu: Cl phosphors,” Phys. Rev. 99(6), 1781–1787 (1955).
[Crossref]

Phys. Rev. B (2)

K. Van den Eeckhout, A. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Y. H. Lee and J. W. Corbett, “EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes,” Phys. Rev. B 13(6), 2653–2666 (1976).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+, Dy3+,” Phys. Status Solidi, B Basic Res. 242(1), R7–R9 (2005).
[Crossref]

Radiat. Meas. (2)

A. J. J. Bos, “Theory of Thermoluminescence,” Radiat. Meas. 41, S45–S56 (2006).
[Crossref]

R. Chen, Y. H. Hu, H. Y. Wu, H. Y. Jin, Z. F. Mou, and S. A. Zhang, “Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphors,” Radiat. Meas. 80, 38–45 (2015).
[Crossref]

Rev. Mod. Phys. (1)

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253–304 (2014).
[Crossref]

RSC Advances (1)

S. A. Zhang, Y. H. Hu, L. Chen, G. F. Ju, T. Wang, and Z. Wang, “Luminescence properties of the pink emitting persistent phosphor Pr3+-doped La3GaGe5O16,” RSC Advances 5(47), 37172–37179 (2015).
[Crossref]

Other (1)

S. W. S. McKeever, Thermoluminescence of Solids, Chapter 3 (Cambridge University Press 1985), pp 64–115.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 View of the structure of La3GaGe5O16 compound and the different cation are shown, respectively.
Fig. 2
Fig. 2 (a) the persistent luminescence of La3(1-x)GaGe5O16:xTb3+ with different doping concentration (x = 0.1%, 0.2%, 0.3%, 0.5%, 1.0% and 1.5%) measured immediately after stopping the light source (excitation slit Δλ = 10 nm, emission slit Δλ = 10 nm); (b) CIE chromaticity coordinates of the Tb3+-doped samples.
Fig. 3
Fig. 3 (a) TL glow curves of La2.99GaGe5O16:1.0%Tb3+ measured by varying the delay time ; (b) TL glow curves by preheating the La2.99GaGe5O16:1.0%Tb3+ sample at the different thermal cleaning temperature; (c) Initial rise analysis of the corresponding TL glow curves; (d) Trap depth distribution of La2.99GaGe5O16:1.0%Tb3+ sample.
Fig. 4
Fig. 4 TL glow curves of La3GaGe5O16:Tb3+ synthesized at different atmosphere (a:5%H2 + 95%N2, b: 100% N2, c: the air and d: vacuum).
Fig. 5
Fig. 5 (a) The emission images of La3GaGe5+xO16+4x:0.01Tb3+ (−0.05≤x≤0.05) recorded by a classic Reflex digital camera with the same exposure time varying with the different afterglow time (t = 0.5, 3, 5, 10 and 15 min); (b) the afterglow curves of La3GaGe5+xO16+4x:0.01Tb3+ (−0.05≤x≤0.05) samples; (c) TL glow curves of La3GaGe5+xO16+4x:0.01Tb3+ (−0.05≤x≤0.05) sample (Irradiation time: 2 min; delay time: 3 min and heating rate:1°C/s); (d) deconvolution of the TL glow curve of the La3GaGe4.95O15.20:0.01Tb3+ sample.
Fig. 6
Fig. 6 The trap types: EPR spectra of La3GaGe5O16 host and La3GaGe5O16:0.015Tb3+ sample recorded at 100K after irradiation; inset show the EPR spectra of La3GaGe5O16 host before irradiation.
Fig. 7
Fig. 7 (a) Computed band structure, density of states (DOS); (b) momentum projected local density of states (PDOS) for La3GaGe5O16 (Zero of energy is set at the Fermi level.
Fig. 8
Fig. 8 Computed band structure of La3GaGe5O16 host and La3GaGe5O16 + VO4 (a: the Fermi level is set to 0 eV; b: the hole energy level above the VB is set to 0 eV).
Fig. 9
Fig. 9 A simplified picture of Frank-Condon shift in the case of VO.
Fig. 10
Fig. 10 The XRD patterns of La3GaGe5O16: xTb3+ (x=0, 0.1%, 0.3%, 0.5% and 1.0%).
Fig. 11
Fig. 11 Unit cell of La3GaGe5O16 ( centrosymmetric point: Г(0, 0, 0) Z(0, 0, 0.5) Y or F (0, 0.5, 0) X or B (0.5, 0, 0) V(0.5, 0.5, 0) U(0.5, 0, 0.5) T or Q (0, 0.5, 0.5) R(0.5, 0.5, 0.5).
Fig. 12
Fig. 12 Experimental (a) and calculated (b) crystal structure of La3GaGe5O16.
Fig. 13
Fig. 13 Excitation and emission spectra of La2.99GaGe5O16: 0.01Tb3+ sample.
Fig. 14
Fig. 14 The persistent emission spectra of La3(1-x)GaGe5O16:xTb3+ as a function of the afterglow time.
Fig. 15
Fig. 15 XRD patterns of La3GaGe5+xO16+4x:0.01Tb3+ (-0.05≤x≤0.05) samples.
Fig. 16
Fig. 16 UV-visible diffuse reflection spectrum of undoped La3GaGe5O16 ; the inset gives the relationship between (F( R )hν) 2 and hv.
Fig. 17
Fig. 17 (a) the perfect compound La3GaGe5O16;(b-f) presents the different crystal structures after relaxation with different oxygen vacancies such as VO1, VO2, VO3, VO4 and VO5.

Tables (1)

Tables Icon

Table 1 The calculated total energy difference between the supercell containing one relaxed oxygen vacancy in La3GaGe5O16 and the perfect supercell.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)=Cexp( E kT )

Metrics