Abstract

AlN waveguides on sapphire substrates were fabricated from AlN films grown by metalorganic chemical vapor deposition. By tuning the wavelength of the pump light we demonstrated a second harmonic generation in the UV at 306, 331, and 356 nm using the d33 coefficient and modal dispersion phase matching (MDPM). A theoretical model for MDPM with two- and three-mode interaction in planar waveguides was used to explain the results. Its essential component describes the interaction of two, possibly different, waveguide modes at the fundamental frequency that excite the third mode at doubled frequency. The experimental results were found to agree well with the theoretical model. This work confirmed the application potential of high-quality AlN films as waveguides for nonlinear processes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation

M. Jäger, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse
J. Opt. Soc. Am. B 15(2) 781-788 (1998)

Second-harmonic generation in quasi-phase-matching waveguides with a multimode pump

Sten Helmfrid and Gunnar Arvidsson
J. Opt. Soc. Am. B 8(11) 2326-2330 (1991)

Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing

K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh
Opt. Lett. 28(11) 911-913 (2003)

References

  • View by:
  • |
  • |
  • |

  1. H. Morkoc, Nitride Semiconductors and Devices (Springer, 1999).
  2. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
    [Crossref]
  3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
    [Crossref]
  4. R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008)
  5. G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
    [Crossref]
  6. Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
    [Crossref]
  7. S. Strite and H. Morkoc, “GaN, AlN and InN: A review,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237 (1992).
  8. S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
    [Crossref]
  9. I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
    [Crossref]
  10. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999).
    [Crossref] [PubMed]
  11. D. B. Anderson and J. T. Boyd, “Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides,” Appl. Phys. Lett. 19(8), 266 (1971).
    [Crossref]
  12. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19(13), 12408–12417 (2011).
    [Crossref] [PubMed]
  13. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  14. Y. L. Lee, W. Shin, B.-A. Yu, C. Jung, Y.-C. Noh, and D.-K. Ko, “Mode tailoring in a ridge-type periodically poled lithium niobate waveguide,” Opt. Express 18(8), 7678–7684 (2010).
    [Crossref] [PubMed]
  15. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
    [Crossref]
  16. P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
    [Crossref]
  17. D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
    [Crossref]
  18. D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
    [Crossref]
  19. A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
    [Crossref]
  20. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equation and the Schrodinger Equation (Wiley-Interscience, 2001)
  21. M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
    [Crossref]
  22. M. Bass, V. N. Mahajan, and E. W. Van Stryland, Handbook of Optics - Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 3rd ed. (McGraw-Hill, Inc. 2010)

2015 (1)

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

2014 (1)

I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
[Crossref]

2012 (1)

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

2011 (1)

2010 (2)

Y. L. Lee, W. Shin, B.-A. Yu, C. Jung, Y.-C. Noh, and D.-K. Ko, “Mode tailoring in a ridge-type periodically poled lithium niobate waveguide,” Opt. Express 18(8), 7678–7684 (2010).
[Crossref] [PubMed]

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

2008 (1)

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

2004 (1)

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
[Crossref]

1999 (2)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999).
[Crossref] [PubMed]

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

1995 (2)

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

1994 (1)

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

1992 (1)

S. Strite and H. Morkoc, “GaN, AlN and InN: A review,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237 (1992).

1987 (1)

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

1977 (1)

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

1971 (2)

D. B. Anderson and J. T. Boyd, “Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides,” Appl. Phys. Lett. 19(8), 266 (1971).
[Crossref]

P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
[Crossref] [PubMed]

Aimez, V.

Anderson, D. B.

D. B. Anderson and J. T. Boyd, “Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides,” Appl. Phys. Lett. 19(8), 266 (1971).
[Crossref]

Arès, R.

Biaggio, I.

I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
[Crossref]

Blanc, D.

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

Bobea, M.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Bouchoux, A. M.

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

Boyd, J. T.

D. B. Anderson and J. T. Boyd, “Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides,” Appl. Phys. Lett. 19(8), 266 (1971).
[Crossref]

Buh, J.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Cachard, A.

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

Chaker, M.

Christodoulides, D. N.

Coda, V.

I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
[Crossref]

Collazo, R.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Dalmau, R.

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

De Angelis, C.

Delprat, S.

Duchesne, D.

Ebrahimzadeh, M.

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
[Crossref]

Fujii, Y.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

Gerhold, M. D.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Hahn, D. N.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Helfrich, J. A.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Hoffmann, M. P.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

Jung, C.

Kan, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Ketterson, J. B.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Kiehne, G. T.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Kirste, R.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Kitaoka, Y.

Ko, D.-K.

Kung, P.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Kuwabara, M.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Lee, Y. L.

Légaré, F.

Lin, W. P.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Locatelli, A.

Lundquist, P. M.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Maekawa, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

Misawa, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

Mita, S.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Mizuuchi, K.

Modotto, D.

Montemezzani, G.

I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
[Crossref]

Morandotti, R.

Morkoc, H.

S. Strite and H. Morkoc, “GaN, AlN and InN: A review,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237 (1992).

Moutzouris, K.

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

Noh, Y.-C.

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

Plumereau, C.

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

Pohl, R. O.

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Razeghi, M.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Rice, A.

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Rigler, M.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Rippert, E. D.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Roux, J. F.

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

Rutkowska, K. A.

Sakudo, T.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

Salamo, G.

Saxler, A.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

Shin, W.

Sitar, Z.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Slack, G. A.

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Sorel, M.

Strite, S.

S. Strite and H. Morkoc, “GaN, AlN and InN: A review,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237 (1992).

Sugita, T.

Tang, H. X.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

Tanzilli, R.

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Tien, P. K.

Tweedie, J.

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Vandersande, J. W.

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Venugopal Rao, S.

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
[Crossref]

Volatier, M.

Wong, G. K.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Wong, G. K. L.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

Xie, J.

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

Xiong, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

Xu, Z. Y.

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

Yamamoto, K.

Yamashita, Y.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Yoshida, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Yoshida, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

Yu, B.-A.

Zgonik, M.

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Rigler, J. Buh, M. P. Hoffmann, R. Kirste, M. Bobea, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “Optical characterization of Al- and N-polar AlN waveguides for integrated optics,” Appl. Phys. Express 8(4), 042603 (2015).
[Crossref]

Appl. Phys. Lett. (6)

D. Blanc, A. M. Bouchoux, C. Plumereau, A. Cachard, and J. F. Roux, “Phase-matching frequency doubling in an aluminum nitride waveguide with a tunable laser source,” Appl. Phys. Lett. 66(6), 659 (1995).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio‐frequency sputter‐deposited aluminum nitride thin films,” Appl. Phys. Lett. 65(9), 1085 (1994).
[Crossref]

D. B. Anderson and J. T. Boyd, “Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides,” Appl. Phys. Lett. 19(8), 266 (1971).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power in GaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868 (1995).
[Crossref]

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31(12), 815 (1977).
[Crossref]

J. Appl. Phys. (2)

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, and M. Razeghi, “Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides,” J. Appl. Phys. 85(5), 2497 (1999).
[Crossref]

A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, “Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition,” J. Appl. Phys. 108(4), 043510 (2010).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004).
[Crossref]

J. Phys. Chem. Solids (1)

G. A. Slack, R. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. (1)

S. Strite and H. Morkoc, “GaN, AlN and InN: A review,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237 (1992).

Nat. Photonics (1)

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

I. Biaggio, V. Coda, and G. Montemezzani, “Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides,” Phys. Rev. A 90(4), 043816 (2014).
[Crossref]

Other (4)

H. Morkoc, Nitride Semiconductors and Devices (Springer, 1999).

R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008)

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equation and the Schrodinger Equation (Wiley-Interscience, 2001)

M. Bass, V. N. Mahajan, and E. W. Van Stryland, Handbook of Optics - Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 3rd ed. (McGraw-Hill, Inc. 2010)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cross section of a waveguide consisting of the film with thickness W between media with lower refractive indices. The c-axis of the wurtzite AlN is parallel to the z-axis. The scalar dielectric constants of substrate, waveguide core and air are ε1, ε2 and ε3, respectively.
Fig. 2
Fig. 2 The dispersions of neff for the pump (red dashed lines) and SH (blue solid lines) waveguide modes in AlN waveguide with a thickness of 550 nm. Dotted lines represent the dispersions of the extraordinary refractive indices of bulk AlN [13] and sapphire [14]. At wavelengths where blue and red lines intersect, phase matching occurs. The black circles indicate the MDPM interactions which are responsible for the measured SH signal. The inset schematically shows additional dispersion curves taking into account first excited mode in the y-direction of a rectangular waveguide. The three intersections marked with circles have significant overlap integrals.
Fig. 3
Fig. 3 a) SEM image of a rectangular AlN waveguide on sapphire substrate. b) Picture taken by a camera above the sample showing light coupling and scattering of a HeNe laser beam. The horizontal scattering line is coming from the sapphire substrate.
Fig. 4
Fig. 4 Second harmonic generation spectra in AlN waveguides for three different pump wavelengths. The SH response is a consequence of MDPM between the mode combinations 2 TM 1 ω TM 4 2ω , TM 0 ω + TM 1 ω TM 3 2ω and 2 TM 0 ω TM 2 2ω denoted with circles in Fig. 2. Blue solid curves show the SH spectra and the dashed red curves the pump spectra.
Fig. 5
Fig. 5 The SH response in the AlN waveguide at different central wavelengths of the pump wave spectra. The solid blue lines show the spectrum of the SH signals and the dashed red lines show the pump spectra.

Tables (1)

Tables Icon

Table 1 Approximate values of normalized overlap integrals for different waveguide mode combinations {r, s, p} = {0, 1, 2, 3, 4, 5} for which Eq. (18) is true. Calculations were done in the limit of perfect confinement of modes inside the waveguide core. The experimentally observed combinations are underlined, the combinations with largest Гr,s,p are highlighted yellow, however, they are not phase-matched in our waveguide.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2 H y + ε c 0 2 2 H y t 2 =0,
H y s ( x,z,t )= H 0 s ψ s (z) e i( β s xωt) .
ψ 1 s (z)= η 1 e κ 1 s z z0 ψ 2 s (z)=sin( κ 2 s z+ϕ)0zW. ψ 3 s (z)= η 3 e κ 3 s (zW) zW
ψ s (z) ψ r (z)dz= δ sr W/2 ,
κ 1 s = ( β s ) 2 k 0 2 ε 1 , κ 2 s = k 0 2 ε 2 ( β s ) 2 and κ 3 s = ( β s ) 2 k 0 2 ε 3 .
P NL = ε 0 χ (2) : E E ,
E z (x,z,t)= β s ωε ε 0 H y (x,z,t)= E 0 s ψ s (z) e i( β s xωt) .
2 E z ε c 0 2 2 E z t 2 = μ 0 2 P z NL t 2 ,
E ω (x,z,t)= s 1 2 ( E ω s (x) ψ ω s (z) e i( β ω s xωt) +c.c) , E 2ω (x,z,t)= p 1 2 ( E 2ω p (x) ψ 2ω p (z) e i( β 2ω p x2ωt) +c.c.) ,
P 2ω NL (x,z,t)= ε 0 4 rs d 33 E ω r (x) E ω s (x) ψ ω r (z) ψ ω s (z) e i(( β ω r + β ω s )x2ωt) .
p E 2ω p (x) x ψ 2ω p (z) e i β 2ω p x n eff 2ω,p = iω 2 c 0 d 33 rs E ω r E ω s ψ ω r (z) ψ ω s (z) e i( β ω r + β ω s )x .
E 2ω p (x)= i4 ω 2 d 33 3π c 0 2 n eff 2ω,p rs E ω r E ω s Γ p,r,s ( e iΔ β p,r,s x 1 iΔ β p,r,s ) ,
Δ β p,r,s = β 2ω p β ω r β ω s ,
Γ p,r,s = 9 π 2 16 W 2 [ ψ ω r (z) ψ ω s (z) ψ 2ω p (z)dz ] 2 ,
P 2ω p (x)= 32 ω 2 d 33 2 ε 2ω n eff ω,r n eff ω,s 9 π 2 W ε 0 c 0 3 ε ω 2 ( n eff 2ω,p ) 3 P ω r P ω s Γ p,r,s x 2 ,
P ω r (x)= ( H ω r ) y * ( E ω r ) z dz= ω ε 0 ε ω W 2 β ω r | E ω r (x) | 2 .
rs<porr<sp.
ψ n (z)=sin( π W (1+n)z ),
Γ r,s,p = 9 π 2 16 W 2 ( 0 W sin( π W (1+r)z )sin( π W (1+s)z )sin( π W (1+p)z )dz ) 2 ,

Metrics