Abstract

In this paper, c-plane stepped- and graded- InGaN/GaN multiple quantum wells (MQWs) are grown using plasma assisted molecular beam epitaxy (PAMBE) by in situ surface stoichiometry monitoring (i-SSM). Such a technique considerably reduces the strain build-up due to indium clustering within and across graded-MQWs; especially for QW closer to the top which results in mitigation of the quantum-confined Stark effect (QCSE). This is validated by a reduced power dependent photoluminescence blueshift of 10 meV in graded-MQWs as compared to a blueshift of 17 meV for stepped-MQWs. We further analyze microstrain within the MQWs, using Raman spectroscopy and geometrical phase analysis (GPA) on high-angle annular dark-field (HAADF)-scanning transmission electron microscope (STEM) images of stepped- and graded-MQWs, highlighting the reduction of ~1% strain in graded-MQWs over stepped-MQWs. Our analysis provides direct evidence of the advantage of graded-MQWs for the commercially viable c-plane light-emitting and laser diodes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates

Vin-Cent Su, Po-Hsun Chen, Ray-Ming Lin, Ming-Lun Lee, Yao-Hong You, Chung-I Ho, Yi-Chi Chen, Wei-Fan Chen, and Chieh-Hsiung Kuan
Opt. Express 21(24) 30065-30073 (2013)

Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes

Kwanjae Lee, Cheul-Ro Lee, Jin Hong Lee, Tae-Hoon Chung, Mee-Yi Ryu, Kwang-Un Jeong, Jae-Young Leem, and Jin Soo Kim
Opt. Express 24(7) 7743-7751 (2016)

Strain-related recombination mechanisms in polar InGaN/GaN MQWs on amorphous SixC1-x buffers

Tao Lin, Fangze Wang, Chih-Hsien Cheng, Shuai Chen, Zhe Chuan Feng, and Gong-Ru Lin
Opt. Mater. Express 8(5) 1100-1106 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
    [Crossref]
  2. S. S. Yin, C. Wang, W. Zhu, J. Yao, J. Zou, X. Lin, and C. Luo, “Single chip super broadband InGaN/GaN LED enabled by nanostructured substrate,” Opt. Express 22(5), A1380–A1388 (2014).
    [PubMed]
  3. C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
    [Crossref]
  4. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
    [Crossref]
  5. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
    [Crossref]
  6. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
    [Crossref]
  7. Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
    [Crossref]
  8. Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
    [Crossref]
  9. Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
    [Crossref]
  10. M. Bockowski, “Bulk growth of gallium nitride: challenges and difficulties,” Cryst. Res. Technol. 42(12), 1162–1175 (2007).
    [Crossref]
  11. C.-T. Yu, W.-C. Lai, C.-H. Yen, and S.-J. Chang, “InN/GaN alternative growth of thick InGaN wells on GaN-based light emitting diodes,” Opt. Mater. Express 3(11), 1952–1959 (2013).
    [Crossref]
  12. H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
    [Crossref]
  13. S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
    [Crossref]
  14. L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
    [Crossref]
  15. C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
    [Crossref]
  16. P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
    [Crossref]
  17. H. M. Lu and G. X. Chen, “Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes,” J. Appl. Phys. 109(9), 093102 (2011).
    [Crossref]
  18. C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
    [Crossref]
  19. S. Dang, C. Li, P. Sun, W. Jia, T. Li, and B. Xu, “Effects of polarization field distribution on photoelectric properties of InGaN light-emitting diodes,” Opt. Mater. Express 4(9), 1848–1855 (2014).
    [Crossref]
  20. C. Shen, T. K. Ng, and B. S. Ooi, “Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing,” Opt. Express 23(6), 7991–7998 (2015).
    [Crossref] [PubMed]
  21. M. J. Hytch and L. Potez, “Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au,” Philos. Mag. A 76(6), 1119–1138 (1997).
    [Crossref]
  22. W. Chang and T. D. Brown, “Reliability of the CFTM and GPA methods for strain analysis at ultra-thin layers,” Micron 42(5), 392–400 (2011).
    [Crossref] [PubMed]
  23. J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
    [Crossref] [PubMed]
  24. Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
    [Crossref]
  25. H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).
  26. J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
    [Crossref]
  27. V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
    [Crossref] [PubMed]
  28. Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
    [Crossref]
  29. G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
    [Crossref]
  30. C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).
  31. Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
    [Crossref]
  32. H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, “Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells,” Opt. Express 20(4), 3932–3940 (2012).
    [Crossref] [PubMed]
  33. K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
    [Crossref]
  34. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [Crossref]
  35. D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
    [Crossref]
  36. T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
    [Crossref]
  37. M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
    [Crossref]
  38. M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
    [Crossref]
  39. L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
    [Crossref]
  40. S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
    [Crossref]

2015 (4)

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

C. Shen, T. K. Ng, and B. S. Ooi, “Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing,” Opt. Express 23(6), 7991–7998 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

C.-T. Yu, W.-C. Lai, C.-H. Yen, and S.-J. Chang, “InN/GaN alternative growth of thick InGaN wells on GaN-based light emitting diodes,” Opt. Mater. Express 3(11), 1952–1959 (2013).
[Crossref]

V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
[Crossref] [PubMed]

2012 (2)

H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, “Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells,” Opt. Express 20(4), 3932–3940 (2012).
[Crossref] [PubMed]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

2011 (4)

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

H. M. Lu and G. X. Chen, “Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes,” J. Appl. Phys. 109(9), 093102 (2011).
[Crossref]

W. Chang and T. D. Brown, “Reliability of the CFTM and GPA methods for strain analysis at ultra-thin layers,” Micron 42(5), 392–400 (2011).
[Crossref] [PubMed]

2009 (3)

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

2007 (2)

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

M. Bockowski, “Bulk growth of gallium nitride: challenges and difficulties,” Cryst. Res. Technol. 42(12), 1162–1175 (2007).
[Crossref]

2006 (1)

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

2005 (1)

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

2004 (1)

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

2003 (1)

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

2002 (2)

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

2001 (2)

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

2000 (1)

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

1999 (1)

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
[Crossref]

1998 (4)

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

1997 (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
[Crossref]

M. J. Hytch and L. Potez, “Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au,” Philos. Mag. A 76(6), 1119–1138 (1997).
[Crossref]

1996 (1)

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Ahn, D.

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

Akasaki, I.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Akutsu, N.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Alexe, M.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Alyamani, A. Y.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

Amano, H.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Artus, L.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Aumer, M. E.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Averbeck, R.

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Basu, S. N.

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

Beanland, R.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Bechstedt, F.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Bedair, S. M.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Bergman, J. P.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
[Crossref]

Bockowski, M.

M. Bockowski, “Bulk growth of gallium nitride: challenges and difficulties,” Cryst. Res. Technol. 42(12), 1162–1175 (2007).
[Crossref]

Brown, J. S.

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Brown, T. D.

W. Chang and T. D. Brown, “Reliability of the CFTM and GPA methods for strain analysis at ultra-thin layers,” Micron 42(5), 392–400 (2011).
[Crossref] [PubMed]

Calleja, E.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Chang, S.-J.

Chang, W.

W. Chang and T. D. Brown, “Reliability of the CFTM and GPA methods for strain analysis at ultra-thin layers,” Micron 42(5), 392–400 (2011).
[Crossref] [PubMed]

Che, C. M.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Chen, G. X.

H. M. Lu and G. X. Chen, “Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes,” J. Appl. Phys. 109(9), 093102 (2011).
[Crossref]

Chen, H. J.

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

Chen, P. H.

Chen, W. F.

Chen, Y. C.

Chen, Z.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Cheng, L. W.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Cheng, W. C.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Cho, Y. H.

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Choi, S. H.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Chua, S.

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

Ciston, J.

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

Cockburn, J. W.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Colton, J. S.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Cusco, R.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Dai, Q.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Dang, S.

DenBaars, S. P.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Dierolf, V.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Doppalapudi, D.

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

El-Desouki, M. M.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

Fan, W. J.

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Farrell, R. M.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Feenstra, R. M.

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

Feezell, D.

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Filippidis, L.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
[Crossref]

Fischer, A. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Fu, H. Q.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Fujito, K.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Gainer, G. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Gao, Y. L.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Greve, D. W.

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

Han, I. K.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Hao, M.

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

Hernandez, S.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Ho, C. I.

Hoffmann, A.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Huang, G. S.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Hytch, M. J.

M. J. Hytch and L. Potez, “Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au,” Philos. Mag. A 76(6), 1119–1138 (1997).
[Crossref]

Janjua, B.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

Ji, Z.

Jia, W.

Jiang, H. X.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Jiang, Y.

Karch, K.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Kawaguchi, Y.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

Keller, S.

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Kim, C. S.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Kim, J. K.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Kim, J. W.

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

Kim, M. H.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Koblmuller, G.

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Koo, B. H.

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

Kozaki, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Kuan, C. H.

Lai, W.-C.

LeBoeuf, S. F.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Lee, C. M.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Lee, J. I.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Lee, M. L.

Li, C.

Li, M. F.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Li, Q.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Li, T.

Li, X. H.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Li, Z. M. S.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Lim, K. Y.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Lin, J. Y.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Lin, R. M.

Lin, X.

Liu, B.

Liu, B. L.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Liu, G. Y.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Liu, W.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Loke, W. K.

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Lu, H. M.

H. M. Lu and G. X. Chen, “Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes,” J. Appl. Phys. 109(9), 093102 (2011).
[Crossref]

Lu, W.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Lu, Y. J.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Ludwig, K. F.

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

Luo, C.

Martin, R. W.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Masui, S.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Matsumoto, K.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Mino, H.

Mishra, P.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

Mishra, U. K.

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Miyoshi, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Monemar, B.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Moody, B. F.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Moustakas, T. D.

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

Mukai, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
[Crossref]

Nagahama, S.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Nakamura, S.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
[Crossref]

Nam, K.

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Nanishi, Y.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Neugebauer, J.

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

Ng, S. T.

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Ng, T. K.

C. Shen, T. K. Ng, and B. S. Ooi, “Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing,” Opt. Express 23(6), 7991–7998 (2015).
[Crossref] [PubMed]

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Noh, S. K.

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

Northrup, J.

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

O’Donnell, K. P.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Oh, S. H.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

Okada, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Ooi, B. S.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

C. Shen, T. K. Ng, and B. S. Ooi, “Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing,” Opt. Express 23(6), 7991–7998 (2015).
[Crossref] [PubMed]

Ophus, C.

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

Pan, C. C.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Park, S. H.

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

Park, Y.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Pastor, D.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Penn, S. T.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Peters, J. J. P.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Piprek, J.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Poplawsky, J. D.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Potez, L.

M. J. Hytch and L. Potez, “Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au,” Philos. Mag. A 76(6), 1119–1138 (1997).
[Crossref]

Pozina, G.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Qu, S.

Revin, D. G.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Riechert, H.

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Salhi, A.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

Sanchez, A. M.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Schubert, E. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Schubert, M. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Shen, C.

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

C. Shen, T. K. Ng, and B. S. Ooi, “Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing,” Opt. Express 23(6), 7991–7998 (2015).
[Crossref] [PubMed]

Sheng, Y.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Siegle, H.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Song, J. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

Speck, J. S.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Su, V. C.

Sun, P.

Takeuchi, T.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Tanaka, S.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Tansu, N.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Teo, K. L.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Thomsen, C.

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Tokunaga, H.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Tong, S. Y.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Uchida, K.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Van de Walle, C.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
[Crossref]

Wang, C.

Wang, G.

Wang, H.

Wang, H. Y.

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

Wang, S. Z.

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Watson, I. M.

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Weber, E. R.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Wu, F.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

Wu, Y. R.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Xia, C. S.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Xie, M. H.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Xu, B.

Xu, S. J.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Xu, X.

Yamada, M.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
[Crossref]

Yan, Q. M.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

Yanamoto, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Yang, H.

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

Yao, J.

Yen, C.-H.

Yin, S. S.

Yoon, S. F.

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

You, Y. H.

Yu, C.-T.

Yu, P. Y.

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Zeng, F. M.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Zhang, J.

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

Zhang, S. Y. Y.

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Zhang, X. H.

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

Zhang, Z. H.

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Zhao, H. P.

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

Zhao, Y.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Zhao, Y. J.

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Zhu, L. H.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Zhu, W.

Zhu, Y. Y.

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

Zou, J.

Acta Mater. (1)

Y. Y. Zhu, C. Ophus, J. Ciston, and H. Y. Wang, “Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images,” Acta Mater. 61(15), 5646–5663 (2013).
[Crossref]

Appl. Phys. Express (4)

C. C. Pan, S. Tanaka, F. Wu, Y. J. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar(202¯1¯), ” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[Crossref]

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar(202¯1¯), ” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
[Crossref]

Appl. Phys. Lett. (9)

H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[Crossref]

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23), 233501 (2011).
[Crossref]

Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(22), 3181–3183 (1998).
[Crossref]

K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Appl. Phys. Lett. 73(12), 1697–1699 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79(12), 1810–1812 (2001).
[Crossref]

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, “Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization,” Appl. Phys. Lett. 81(27), 5129–5131 (2002).
[Crossref]

M. E. Aumer, S. F. LeBoeuf, B. F. Moody, S. M. Bedair, K. Nam, J. Y. Lin, and H. X. Jiang, “Effects of tensile, compressive, and zero strain on localized states in AlInGaN/InGaN quantum-well structures,” Appl. Phys. Lett. 80(17), 3099–3101 (2002).
[Crossref]

Cryst. Res. Technol. (1)

M. Bockowski, “Bulk growth of gallium nitride: challenges and difficulties,” Cryst. Res. Technol. 42(12), 1162–1175 (2007).
[Crossref]

Electron. Lett. (1)

C. C. Pan, Q. M. Yan, H. Q. Fu, Y. J. Zhao, Y. R. Wu, C. Van de Walle, S. Nakamura, and S. P. DenBaars, “High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier,” Electron. Lett. 51(15), 1187–1189 (2015).
[Crossref]

IEEE Photonics J. (2)

P. Mishra, B. Janjua, T. K. Ng, C. Shen, A. Salhi, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs,” IEEE Photonics J. 7(3), 2300209 (2015).
[Crossref]

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

J. Appl. Phys. (5)

H. M. Lu and G. X. Chen, “Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes,” J. Appl. Phys. 109(9), 093102 (2011).
[Crossref]

D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys. 84(3), 1389–1395 (1998).
[Crossref]

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

J. S. Brown, G. Koblmuller, F. Wu, R. Averbeck, H. Riechert, and J. S. Speck, “Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 99(7), 074902 (2006).
[Crossref]

S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

C. M. Lee, S. H. Choi, C. S. Kim, S. K. Noh, J. I. Lee, K. Y. Lim, and I. K. Han, “Photoluminescence investigation of In0.15Ga0.85N/GaN multiple quantum wells,” J. Korean Phys. Soc. 45, L243–L247 (2004).

J. Vac. Sci. Technol. B (1)

T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B 21(6), 2324–2328 (2003).
[Crossref]

Jpn. J. Appl. Phys. (2)

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(1), 3976–3981 (1999).
[Crossref]

Micron (1)

W. Chang and T. D. Brown, “Reliability of the CFTM and GPA methods for strain analysis at ultra-thin layers,” Micron 42(5), 392–400 (2011).
[Crossref] [PubMed]

MRS Internet J. Nitride Semicond. Res. (1)

H. J. Chen, R. M. Feenstra, J. Northrup, J. Neugebauer, and D. W. Greve, “Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory,” MRS Internet J. Nitride Semicond. Res. 6, 11 (2001).

Opt. Express (4)

Opt. Mater. Express (2)

Philos. Mag. A (1)

M. J. Hytch and L. Potez, “Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au,” Philos. Mag. A 76(6), 1119–1138 (1997).
[Crossref]

Phys. Rev. B (1)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024–10027 (1997).
[Crossref]

Phys. Status Solidi (1)

L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, “Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride,” Phys. Status Solidi 198(2), 621–627 (1996) .
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 206(11), 2637–2640 (2009).
[Crossref]

Ultramicroscopy (1)

J. J. P. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin, S. Y. Y. Zhang, and A. M. Sanchez, “Artefacts in geometric phase analysis of compound materials,” Ultramicroscopy 157, 91–97 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Growth schematic of stepped and graded-QW. (b) Specular spot RHEED intensity variation during controllable MQWs growth by using plasma exposure technique. (c) Specular spot RHEED intensity variation during one cycle of QW growth with in situ images of RHEED diffraction patterns obtained at different stages.
Fig. 2
Fig. 2 Power dependent PL results of stepped (a), and graded-MQWs (b).
Fig. 3
Fig. 3 Temperature dependent PL results of (a) stepped-MQWs (fitted curves as inset) and (b) graded-MQWs (fitted curves as inset), (c) PL spectrum peak position with respect to temperature for stepped- and graded-MQWs, (d) Temperature dependence of the integrated PL intensity for stepped- and graded-MQWs.
Fig. 4
Fig. 4 (a) Raman spectroscopy results of stepped-MQWs (black color curves) and graded-MQWs (red color curves) using different excitation laser sources. Raman spectra obtained using 325nm and 473nm lasers shown using solid and dashed curves respectively. (b) Raman spectra of stepped- and graded-MQWs focusing on A1 (LO) phonon mode.
Fig. 5
Fig. 5 (a) HAADF-HRSTEM images of: (a) stepped-MQWs, (b) graded-MQWs. Strain maps obtained using geometrical phase analysis for: (c) stepped-MQWs, (d) graded-MQWs. Strain profile of: (e) stepped-MQWs, and (f) graded-MQWs. The HAADF intensity line profiles for: (g) stepped-QW, and (h) graded-QW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( T )= I o [ 1+  C 1 exp( E A1 k B T ) +  C 2 exp( E A2 k B T ) ] 1
e xx = u x (r) x = 1 2π| g1 | P g1 (r) x
e yy = u y (r) y = 1 2π| g2 | P g2 (r) y

Metrics