Abstract

Side-polished fiber (SPF) with a graphene sheet on a polished area can enhance the interaction between graphene and a strong evanescent field of optical fiber. Graphene sheet is utilized due to its saturable absorption property. To investigate the response characteristics of the optical transmitted power (λ = 1550 nm) in the SPF, violet light (λ = 450 nm) as pump source is employed to illuminate the graphene sheet. Experimental results reveal that different pump power can change the optical transmitted power of the SPF. When the pump light changes from 0 mW to 11 mW, the optical transmitted power of the SPF varies ~3.4 dB. In this increasing process of the pump power, the linear correlation between relative transmitted power and violet power is ~97.1% with the sensitivity of ~0.29 dB/mW; while the linear correlation is ~96.5% with sensitivity of ~0.25 dB/mW in the decreasing process of the pump power. These results indicate that violet light (order of mW) can manipulate the optical transmitted power of the SPF coated with graphene sheet, which signifies the device can potentially be applied as all optically controllable devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced graphene oxide wrapped on microfiber and its light-control-light characteristics

Dongquan Li, Zhe Chen, Guanglei Chen, Si Hu, Yiting Wang, Wentao Qiu, Jiangli Dong, Jianhui Yu, Jun Zhang, Jieyuan Tang, Yunhan Luo, Heyuan Guan, and Huihui Lu
Opt. Express 25(5) 5415-5425 (2017)

Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing

Huihui Lu, Zhengwen Tian, Haiping Yu, Bing Yang, Guangyin Jing, Guozhen Liao, Jun Zhang, Jianhui Yu, Jieyuan Tang, Yunhan Luo, and Zhe Chen
Opt. Express 22(26) 32502-32508 (2014)

Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing

Tenghui Ouyang, Limin Lin, Kai Xia, Mengjiang Jiang, Yuwei Lang, Heyuan Guan, Jianhui Yu, Dongquan Li, Guanglei Chen, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jiangli Dong, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(9) 9823-9833 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
    [Crossref]
  2. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  5. K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
    [Crossref]
  6. T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
    [Crossref]
  7. N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
    [Crossref] [PubMed]
  8. M. Jung, J. Koo, J. Park, Y. W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
    [Crossref] [PubMed]
  9. H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
    [Crossref]
  10. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [Crossref]
  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [Crossref] [PubMed]
  12. H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  13. Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
    [Crossref]
  14. S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
    [Crossref] [PubMed]
  15. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  16. W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
    [Crossref] [PubMed]
  17. J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
    [Crossref]
  18. H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
    [Crossref] [PubMed]
  19. K. R. Sohn and J. W. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14(11), 1575–1577 (2002).
    [Crossref]
  20. F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
    [Crossref]
  21. Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
    [Crossref]
  22. L. A. Fal’kovsky, “Optical properties of graphene,” J. Exp. Theor. Phys. 115(3), 496–508 (2008).
    [Crossref]
  23. A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
    [Crossref]

2015 (2)

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

2014 (6)

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

2013 (2)

M. Jung, J. Koo, J. Park, Y. W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
[Crossref] [PubMed]

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

2012 (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

2011 (2)

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (3)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

2009 (3)

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

2008 (2)

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

L. A. Fal’kovsky, “Optical properties of graphene,” J. Exp. Theor. Phys. 115(3), 496–508 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2002 (1)

K. R. Sohn and J. W. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14(11), 1575–1577 (2002).
[Crossref]

Ahmad, H.

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Bao, Q. L.

Bolotina, K. I.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Bonaccorso, P. H.

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Cai, X.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Cao, D.

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Chen, B.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, Z.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Cho, J.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Chong, W. Y.

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

Chu, M.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fal’kovsky, L. A.

L. A. Fal’kovsky, “Optical properties of graphene,” J. Exp. Theor. Phys. 115(3), 496–508 (2008).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Feng, M.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Ferrari, A. C

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Fudenberg, G.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Gao, F.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Guo, H.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Han, T.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Hao, R.

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Hasan, T.

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Hone, J.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Jang, S. Y.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Jhon, Y. M.

Jiang, W. S.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Jiang, Z.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Jin, S.

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Jin, X. F.

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Jing, G.

Jung, M.

Kim, H.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, P.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Klima, M.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Koo, J.

Lee, J. H.

Lee, K.

Lee, S.

Li, E. P.

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Y.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Liao, G.

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lim, W. H.

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

Lin, I. N.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Liu, W.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, Y.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Liu, Y. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Liu, Z.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Liu, Z. B.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Lu, H.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Luo, Y.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Meng, C.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Palnitkar, U.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Papakonstantinou, P.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Park, J.

Qiu, W.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Rozhin,

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shang, N.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Sheng, Q.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Sheng, Q. W.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Sikes, K. J.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Sohn, K. R.

K. R. Sohn and J. W. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14(11), 1575–1577 (2002).
[Crossref]

Song, F.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Song, J. W.

K. R. Sohn and J. W. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14(11), 1575–1577 (2002).
[Crossref]

Song, Y. W.

M. Jung, J. Koo, J. Park, Y. W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
[Crossref] [PubMed]

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Stamboulis, A.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Stormer, H. L.

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Su, Y.

Sun, Z.

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Tan, A. G

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Tan, S.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Tang, J.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Tian, J.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Tian, J. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Tian, Z.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Tong, L.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, D. N.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Wang, F.

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Wang, H.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, P.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Wang, Y.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wei, Q.

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Wright, A. R.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Wu, X.

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xin, W.

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, B.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Yap, Y. K.

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

Yu, H.

Yu, J.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Yu, S.

Zakharov, A.

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Zhang, C.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Zhang, J.

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Zhang, S.

Zhang, X. M.

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Zhao, L.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhao, L. M.

Zhou, F.

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Zhou, W. Y.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

ACS Nano (1)

N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, “Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods,” ACS Nano 3(4), 1032–1038 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, P. H. Bonaccorso, A. G Tan, Rozhin, and A. C Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Appl. Phys. Lett. (4)

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Q. Sheng, M. Feng, W. Xin, H. Guo, T. Han, Y. Li, Y. Liu, F. Gao, F. Song, Z. Liu, and J. Tian, “Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser,” Appl. Phys. Lett. 105(4), 041901 (2014).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. R. Sohn and J. W. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14(11), 1575–1577 (2002).
[Crossref]

F. Zhou, R. Hao, X. F. Jin, X. M. Zhang, and E. P. Li, “A graphene-enhanced fiber-optic phase modulator with large linear dynamic range,” IEEE Photonics Technol. Lett. 26(18), 1867–1870 (2014).
[Crossref]

Z. Tian, H. Lu, B. Yang, Y. Wang, W. Qiu, J. Yu, J. Tang, Y. Luo, X. Cai, S. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Exp. Theor. Phys. (1)

L. A. Fal’kovsky, “Optical properties of graphene,” J. Exp. Theor. Phys. 115(3), 496–508 (2008).
[Crossref]

Laser Phys. Lett. (2)

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, J. Yu, X. Cai, S. Tan, J. Tang, Y. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Nano Lett. (1)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Sensors (Basel) (1)

W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors (Basel) 14(12), 24329–24337 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Vertical-sectional profile of side polished fiber; (b) 3D schematic of the basin.
Fig. 2
Fig. 2 Optical transmitted power change during the deposition of graphene versus time.
Fig. 3
Fig. 3 (a) SEM image of SPF with graphene sheet and (b) enlarge view of deposited graphene sheet.
Fig. 4
Fig. 4 Raman spectral of graphene sheet.
Fig. 5
Fig. 5 Schematic of experimental setup for the SPF with graphene sheets.
Fig. 6
Fig. 6 (a) Optical transmitted power change with different pump power of bare SPF versus time; (b) Transmitted power of the SPF coated with graphene with different illuminated violet power.
Fig. 7
Fig. 7 (a) Temperature change in the irradiation area of violet light; (b) Transmitted power of the SPF with deposited graphene sheet when temperature changes.
Fig. 8
Fig. 8 Relative optical transmitted power of the SPF with graphene versus the pump power.

Metrics