Abstract

To meet the growing demand for mid-infrared tunable fiber lasers, the spectroscopic and structural properties of Tm3+/Ho3+ co-doped barium tellurite glass fibers are systematically evaluated by absorption, Raman, and photoluminescence spectra measurements. The density, molar volume, refractive index, and glass transition temperature are assessed in detail to fully understand their basic physical and thermal properties. Benefitting from the multiple structural sites in a barium tellurite glass system, the maximum doping concentration of Tm2O3 reaches up to 6.0 wt.% without inducing any crystallization or phase separation. Such a high ion concentration is conducive to reducing the fiber length and obtaining an efficient laser output. Furthermore, an intense ~2.0 μm ultra-broad emission with a full width at half maximum (FWHM) of 382 nm is achieved in the Tm3+/Ho3+ co-doped sample upon excitation at 808 nm by properly adjusting Tm3+ concentration and fiber length. The larger emission cross-sections and higher gain coefficients along with excellent thermal stability indicate that this barium tellurite glass could be an attractive gain medium for mid-infrared ultra-broad tunable fiber lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser

L. X. Li, W. C. Wang, C. F. Zhang, J. Yuan, B. Zhou, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2904-2914 (2016)

Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang
Opt. Mater. Express 5(12) 2964-2977 (2015)

Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations

Caizhi Wang, Ying Tian, Xinyu Gao, Qunhuo Liu, Feifei Huang, Bingpeng Li, Junjie Zhang, and Shiqing Xu
Opt. Express 25(23) 29512-29525 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
    [Crossref]
  3. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express 17(23), 20952–20958 (2009).
    [Crossref] [PubMed]
  4. K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
    [Crossref] [PubMed]
  5. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
    [Crossref] [PubMed]
  6. J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).
  7. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
    [Crossref]
  8. J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
    [Crossref]
  9. Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
    [Crossref]
  10. W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
    [Crossref]
  11. A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009).
    [Crossref]
  12. R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
    [Crossref]
  13. S. Balaji, A. D. Sontakle, R. J. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism,” Opt. Mater. Express 1(2), 138–150 (2011).
  14. S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
    [Crossref]
  15. H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).
  16. H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
    [Crossref]
  17. S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
    [Crossref]
  18. J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
    [Crossref]
  19. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [Crossref]
  20. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
    [Crossref] [PubMed]
  21. E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
    [Crossref]
  22. M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
    [Crossref]
  23. S. Rai and A. L. Fanai, “Spectroscopic studies of Ho3+ doped SiO2-TiO2 nanoparticle for photonic applications,” Sci. Vis. 14(3), 112–117 (2014).
  24. M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
    [Crossref]
  25. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
    [Crossref]
  26. K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
    [Crossref]
  27. W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
    [Crossref]
  28. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a 2.1 μm Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
    [Crossref]
  29. J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).
  30. R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
    [Crossref]
  31. H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
    [Crossref]
  32. R. S. Wang, X. W. Meng, F. X. Yin, Y. Feng, G. S. Qin, and W. P. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
    [Crossref]

2015 (3)

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

2014 (9)

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

S. Rai and A. L. Fanai, “Spectroscopic studies of Ho3+ doped SiO2-TiO2 nanoparticle for photonic applications,” Sci. Vis. 14(3), 112–117 (2014).

2013 (2)

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

R. S. Wang, X. W. Meng, F. X. Yin, Y. Feng, G. S. Qin, and W. P. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
[Crossref]

2012 (5)

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
[Crossref] [PubMed]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (2)

S. Balaji, A. D. Sontakle, R. J. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism,” Opt. Mater. Express 1(2), 138–150 (2011).

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).

2010 (1)

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

2009 (4)

A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009).
[Crossref]

R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
[Crossref]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a 2.1 μm Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
[Crossref]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express 17(23), 20952–20958 (2009).
[Crossref] [PubMed]

2002 (2)

J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
[Crossref]

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

1999 (1)

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

1995 (1)

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

1993 (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Annapurna, K.

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

Badaron, S. S.

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

Bai, G. X.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Balaji, S.

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

S. Balaji, A. D. Sontakle, R. J. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism,” Opt. Mater. Express 1(2), 138–150 (2011).

R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
[Crossref]

Biswas, K.

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

Chen, D.

Chen, D. D.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Chen, F. Z.

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Chen, H. F.

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Chen, Q. J.

de Camargo, A. S. S.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

de Oliveira, S. L.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

de Sousa, D. F.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

Debnath, R.

A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009).
[Crossref]

R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
[Crossref]

Dorosz, D.

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).

Dorosz, J.

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).

El-Mallawany, R.

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

Evans, C. A.

Fanai, A. L.

S. Rai and A. L. Fanai, “Spectroscopic studies of Ho3+ doped SiO2-TiO2 nanoparticle for photonic applications,” Sci. Vis. 14(3), 112–117 (2014).

Feng, Y.

Geng, J. H.

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Ghosh, A.

R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
[Crossref]

A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009).
[Crossref]

Guo, Y. Y.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Gupta, G.

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

Hariharan, K.

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

Harrison, P.

Hewak, D. W.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

Higuchi, H.

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

Hirao, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Hou, J.

Hu, L.

Hu, L. L.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

Huang, P.

Ikonic, Z.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jayasankar, C. K.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a 2.1 μm Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
[Crossref]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Jia, Z. X.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

Jiang, S. B.

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Jiang, Z. H.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Jing, X. F.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Kadono, K.

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

Kalyandurg, A.

Kamari, H. M.

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

Kawamoto, Y.

J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
[Crossref]

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

Kuan, P.

Lee, Y. W.

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Li, B. P.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, K.

Li, K. F.

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

Li, L. X.

Li, M.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Li, R. B.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Liu, L.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

Liu, Q. H.

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Liu, X. Y.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Matori, K. A.

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

Meng, X. W.

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Nunes, L. A. O.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

Ohishi, Y.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

Peng, S. X.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Qi, Y. W.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Qian, Q.

Qin, G. S.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

R. S. Wang, X. W. Meng, F. X. Yin, Y. Feng, G. S. Qin, and W. P. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
[Crossref]

Qin, W. P.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

R. S. Wang, X. W. Meng, F. X. Yin, Y. Feng, G. S. Qin, and W. P. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
[Crossref]

Qiu, J. B.

J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
[Crossref]

Qiu, J. R.

Rai, S.

S. Rai and A. L. Fanai, “Spectroscopic studies of Ho3+ doped SiO2-TiO2 nanoparticle for photonic applications,” Sci. Vis. 14(3), 112–117 (2014).

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a 2.1 μm Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
[Crossref]

Rosmawati, S.

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

Ruan, F. P.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Rukmini, E.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Sen, R. J.

Shen, R. X.

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Shen, S. X.

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Shojiya, M.

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

Sidek, H. A. S.

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

Soga, N.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Sontakle, A. D.

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

S. Balaji, A. D. Sontakle, R. J. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism,” Opt. Mater. Express 1(2), 138–150 (2011).

Takahashi, M.

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

Tamai, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Tanabe, S.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Tian, C.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Tian, Y.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

Wang, F. C.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wang, G. N.

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

Wang, M.

Wang, Q.

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Wang, R. S.

Wang, W. C.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Wang, X.

Wang, X. S.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Wang, Y. S.

Wei, T.

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Wu, L. B.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Xue, G.

Yang, F. J.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Yang, Q.

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Yang, W.

Yang, Z. M.

Yao, C. F.

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

Yin, D. D.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Yin, F. X.

Yin, K.

Yuan, J.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Zhang, B.

Zhang, G.

Zhang, J. J.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
[Crossref]

Zhang, Q. Y.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express 17(23), 20952–20958 (2009).
[Crossref] [PubMed]

Zhang, W. J.

Zheng, S. C.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Zhou, Y. X.

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

Zmojda, J.

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).

Adv. Condens. Matter Phys. (1)

H. A. S. Sidek, R. El-Mallawany, K. Hariharan, and S. Rosmawati, “Effect of concurrent ZnO addition and AlF3 reduction on the elastic properties of tellurite based glass system,” Adv. Condens. Matter Phys. 2014, 174362 (2014).
[Crossref]

Adv. Mater. Sci. Eng. (1)

H. A. S. Sidek, R. El-Mallawany, S. S. Badaron, H. M. Kamari, and K. A. Matori, “Optical properties of erbium zinc tellurite glass system,” Adv. Mater. Sci. Eng. 2015, 628954 (2015).

Bull. Pol. Acad. Sci.- Technol. Soc. (1)

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 µm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Acad. Sci.- Technol. Soc. 59(4), 381–387 (2011).

Chem. Phys. Lett. (1)

R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4), 331–335 (2009).
[Crossref]

IEEE Sel. Top. Quantum Electron. (1)

J. H. Geng, Q. Wang, Y. W. Lee, and S. B. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

J. Alloys Compd. (1)

S. X. Peng, F. J. Yang, L. B. Wu, Y. W. Qi, S. C. Zheng, D. D. Yin, X. S. Wang, and Y. X. Zhou, “Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties,” J. Alloys Compd. 609, 14–20 (2014).
[Crossref]

J. Appl. Phys. (2)

J. Yuan, Q. Yang, D. D. Chen, Q. Qian, S. X. Shen, Q. Y. Zhang, and Z. H. Jiang, “Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier,” J. Appl. Phys. 111(10), 103511 (2012).
[Crossref]

Z. X. Jia, L. Liu, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(6), 063106 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (2)

R. B. Li, C. Tian, Y. Tian, T. Wei, B. P. Li, X. F. Jing, F. P. Ruan, and F. C. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

M. Li, G. X. Bai, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

J. Non-Cryst. Solids (2)

K. Kadono, M. Shojiya, M. Takahashi, H. Higuchi, and Y. Kawamoto, “Radiative and non-radiative relaxation of rare-earth ions in Ga2S3-GeS2-La2S3 glasses,” J. Non-Cryst. Solids 259(1), 39–44 (1999).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[Crossref]

J. Quant. Spectrosc. RA. (2)

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm luminescence and energy transfer characteristics in Tm3+/Ho3+ co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

S. Balaji, K. Biswas, A. D. Sontakle, G. Gupta, and K. Annapurna, “Enhanced 1.8 μm emission in Yb3+/Tm3+ co-doped tellurite glass: effects of Yb3+ ↔ Tm3+ energy transfer and back transfer,” J. Quant. Spectrosc. RA. 147(2), 112–120 (2014).
[Crossref]

Mater. Lett. (1)

J. J. Zhang, J. B. Qiu, and Y. Kawamoto, “New oxyfluorotellurite glass: thermal analysis and structural analysis by means of Raman scattering,” Mater. Lett. 55(1), 77–82 (2002).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

H. F. Chen, F. Z. Chen, T. Wei, Q. H. Liu, R. X. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Opt. Express (3)

Opt. Mater. (2)

A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009).
[Crossref]

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. B (2)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Sci. Vis. (1)

S. Rai and A. L. Fanai, “Spectroscopic studies of Ho3+ doped SiO2-TiO2 nanoparticle for photonic applications,” Sci. Vis. 14(3), 112–117 (2014).

Solid State Commun. (1)

K. F. Li, G. N. Wang, J. J. Zhang, and L. L. Hu, “Broadband ~2 μm emission in Tm3+/Ho3+ co-doped TeO2–WO3–La2O3 glass,” Solid State Commun. 150(39), 1915–1918 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The variation of density and molar volume for barium tellurite glass with Tm2O3 contents when Ho2O3 content is fixed at 0.5 wt.%.
Fig. 2
Fig. 2 DSC curves of barium tellurite glass with Tm2O3 contents when Ho2O3 content is fixed at 0.5 wt.%.
Fig. 3
Fig. 3 Raman spectrum of the undoped barium tellurite glass with fitting data.
Fig. 4
Fig. 4 Absorption spectra of Tm3+, Ho3+, and Tm3+/Ho3+ co-doped barium tellurite glasses. Inset: integral absorption intensities at 793 nm as a function of Tm3+ concentrations.
Fig. 5
Fig. 5 Emission spectra of Tm3+/Ho3+ co-doped barium tellurite glasses upon excitation of 808 nm LD with various Tm2O3 concentrations. Inset: simplified energy level diagram for Tm3+-Ho3+ co-doped system.
Fig. 6
Fig. 6 Absorption and emission cross sections corresponding to the Tm3+: 3H63F4 and Ho3+: 5I85I7 transitions in barium tellurite glasses.
Fig. 7
Fig. 7 Calculated gain coefficients versus wavelengths of (a) Tm3+: 3F43H6 and (b) Ho3+: 5I75I8 transitions in barium tellurite glasses.
Fig. 8
Fig. 8 XRD patterns for the core and cladding glasses.
Fig. 9
Fig. 9 Comparison of emission spectra for bulk glass and glass fibers with various lengths upon excitation of 808 nm LD.

Tables (5)

Tables Icon

Table 1 Comparison of J-O intensity parameters for Tm3+ and Ho3+ in several glass systems.

Tables Icon

Table 2 Predicted spontaneous emission probabilities, branching ratios and radiative lifetimes of Tm3+ in the present glass.

Tables Icon

Table 3 Predicted spontaneous emission probabilities, branching ratios and radiative lifetimes of Ho3+ in the present glass.

Tables Icon

Table 4 Comparison of doping concentrations and gain coefficients for several Tm3+- and Ho3+-doped glasses.

Tables Icon

Table 5 Basic physical parameters of the core and cladding glasses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ = A exp ( x / B ) + C
V m = M ρ
M = 80 M T e O 2 + 10 M B a F 2 + 5 M B a O + 5 M L a 2 O 3 + x + 0.5 100 + x / M T m 2 O 3 + 0.5 / M H o 2 O 3

Metrics