Abstract

Looking for new and/or improved optical properties from silicon-based materials, this work reports on the spectroscopic study of a samarium-doped silicon-oxide (SiOx) film. The film was prepared by the sputtering method and used argon ions to bombard a Si solid target partially covered with Sm2O3 powder. In the as-deposited form, the film was amorphous and presented samarium and oxygen contents around 0.6 and 13.8 at.%, respectively. Thermal annealing under a flow of oxygen induced the optical bandgap widening of the film and the development of Sm-related light emission in the visible and near-infrared ranges. The luminescence experiments were obtained at different photon excitation energies and temperatures (10 and 300 K). According to these results it is possible to state that both trivalent and divalent samarium ions are present in the SiOx film, and that their relative luminescence intensity is highly susceptible to the SiOx energy bands and Sm3+/2+ energy levels characteristics. The main aspects leading to the simultaneous presence of Sm3+ and Sm2+ ions in the SiOx host as well as their most probable excitation-recombination mechanisms are presented and discussed to a certain extent.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 1535 nm light emission from an all-Si-based optical micro-cavity containing Er3+ and Yb3+ ions

I. B. Gallo, A. Braud, and A. R. Zanatta
Opt. Express 21(23) 28394-28402 (2013)

Effect of substitution of lutetium by gadolinium on emission characteristics of (LuxGd1-x)2SiO5: Sm3+ single crystals

W. Ryba-Romanowski, A. Strzęp, R. Lisiecki, M. Berkowski, H. Rodriguez-Rodriguez, and I.R. Martin
Opt. Mater. Express 4(4) 739-752 (2014)

Combinatorial approach toward optimization of the light emission intensity of AlOxNy:Yb3+ thin films

K. Y. Tucto, W. Aponte, J. A. Dulanto, J. A. Töfflinger, J. A. Guerra, and R. Grieseler
Appl. Opt. 58(12) 3097-3103 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. B. Henderson and G. Imbush, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989), Chapter 8.
  3. P. P. Sorokin and M. J. Stevenson, “Solid-state optical maser using divalent Samarium in Calcium fluoride,” IBM J. Res. Develop. 5(1), 56–58 (1961).
    [Crossref]
  4. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  5. M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
    [Crossref]
  6. A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10(7), 350–352 (1985).
    [Crossref] [PubMed]
  7. A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Room-temperature persistent spectral hole burning in Sm(2+)-doped fluoride glasses,” Opt. Lett. 19(5), 314–316 (1994).
    [Crossref] [PubMed]
  8. A. R. Zanatta, “An alternative experimental approach to produce rare-earth-doped SiOx films,” J. Appl. Phys. 119(14), 145302 (2016).
    [Crossref]
  9. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
    [Crossref]
  10. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991), Chap. 3.
  11. J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
    [Crossref]
  12. J. S. Lannin, “Local structural order in amorphous semiconductors,” Phys. Today 41(7), 28–35 (1988).
    [Crossref]
  13. A. R. Zanatta and M. E. Kordesch, “On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon,” J. Appl. Phys. 116(7), 073511 (2014).
    [Crossref]
  14. G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley Interscience, 1968).
  15. H. V. Lauer and F. K. Fong, “Role of the 4f55d band in the radiationless 5D1→5D0 coupling in BaCl2:Sm2+ and BaBr2:Sm2+,” J. Chem. Phys. 65(8), 3108–3117 (1976).
    [Crossref]
  16. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
    [Crossref]
  17. M. Stutzmann, “Optical properties of silicon nanostructures,” Phys. Stat. Sol. 192(2), 273–286 (1995).
    [Crossref]
  18. D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
    [Crossref] [PubMed]
  19. D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
    [Crossref]
  20. R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).
  21. Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
    [Crossref]
  22. A. R. Zanatta, “Visible light emission and energy transfer processes in Sm-doped nitride films,” J. Appl. Phys. 111(12), 123105 (2012).
    [Crossref]
  23. R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
    [Crossref]
  24. A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
    [Crossref]
  25. J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
    [Crossref]
  26. M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
    [Crossref]
  27. T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).
  28. J. Qiu and K. Hirao, “γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses,” J. Mater. Sci. Lett. 20(8), 691–693 (2001).
    [Crossref]
  29. M. Nogami and K. Suzuki, “Fast spectral hole burning in Sm2+-doped Al2O3-SiO2 glasses,” Adv. Mater. 14(12), 923–926 (2002).
    [Crossref]
  30. E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).
  31. G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
    [Crossref]
  32. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991), Chap. 4.
  33. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).
  34. A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
    [Crossref]
  35. A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).
  36. C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
    [Crossref]
  37. A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett. 82(9), 1395–1397 (2003).
    [Crossref]
  38. A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett. 72(24), 3127–3129 (1998).
    [Crossref]
  39. C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
    [Crossref]
  40. J. K. Lawson and S. A. Payne, “Excited-state absorption and gain measurements of CaF2:Sm2+,” J. Opt. Soc. Am. B 8(7), 1404–1411 (1991).
    [Crossref]
  41. P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
    [Crossref]
  42. M. Nogami and Y. Abe, “Sm2+-doped silicate glasses prepared by a sol-gel process,” Appl. Phys. Lett. 65(10), 1227–1229 (1994).
    [Crossref]

2016 (1)

A. R. Zanatta, “An alternative experimental approach to produce rare-earth-doped SiOx films,” J. Appl. Phys. 119(14), 145302 (2016).
[Crossref]

2014 (1)

A. R. Zanatta and M. E. Kordesch, “On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon,” J. Appl. Phys. 116(7), 073511 (2014).
[Crossref]

2012 (1)

A. R. Zanatta, “Visible light emission and energy transfer processes in Sm-doped nitride films,” J. Appl. Phys. 111(12), 123105 (2012).
[Crossref]

2009 (1)

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

2007 (1)

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

2006 (1)

2004 (1)

C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
[Crossref]

2003 (5)

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett. 82(9), 1395–1397 (2003).
[Crossref]

G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
[Crossref]

2002 (3)

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

M. Nogami and K. Suzuki, “Fast spectral hole burning in Sm2+-doped Al2O3-SiO2 glasses,” Adv. Mater. 14(12), 923–926 (2002).
[Crossref]

C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
[Crossref]

2001 (2)

J. Qiu and K. Hirao, “γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses,” J. Mater. Sci. Lett. 20(8), 691–693 (2001).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

1999 (1)

P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
[Crossref]

1998 (3)

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett. 72(24), 3127–3129 (1998).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

1996 (1)

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

1995 (1)

M. Stutzmann, “Optical properties of silicon nanostructures,” Phys. Stat. Sol. 192(2), 273–286 (1995).
[Crossref]

1994 (2)

1992 (1)

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

1991 (1)

1990 (1)

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

1988 (2)

J. S. Lannin, “Local structural order in amorphous semiconductors,” Phys. Today 41(7), 28–35 (1988).
[Crossref]

M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
[Crossref]

1985 (1)

1981 (1)

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

1976 (1)

H. V. Lauer and F. K. Fong, “Role of the 4f55d band in the radiationless 5D1→5D0 coupling in BaCl2:Sm2+ and BaBr2:Sm2+,” J. Chem. Phys. 65(8), 3108–3117 (1976).
[Crossref]

1975 (1)

R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).

1971 (1)

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

1961 (1)

P. P. Sorokin and M. J. Stevenson, “Solid-state optical maser using divalent Samarium in Calcium fluoride,” IBM J. Res. Develop. 5(1), 56–58 (1961).
[Crossref]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Abe, Y.

M. Nogami and Y. Abe, “Sm2+-doped silicate glasses prepared by a sol-gel process,” Appl. Phys. Lett. 65(10), 1227–1229 (1994).
[Crossref]

Alexandrova, S.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Alvarez, F.

A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).

C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
[Crossref]

Angelov, O.

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Baribeau, J.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Bineva, I.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Boehm, L.

R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).

Boizot, B.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

Bornstein, A.

R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).

Brodsky, M. H.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Carius, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

Crowder, B. L.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Demskaya, A. L.

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Farries, M. C.

M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
[Crossref]

Fathpour, S.

Fischer, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

Fong, F. K.

H. V. Lauer and F. K. Fong, “Role of the 4f55d band in the radiationless 5D1→5D0 coupling in BaCl2:Sm2+ and BaBr2:Sm2+,” J. Chem. Phys. 65(8), 3108–3117 (1976).
[Crossref]

Ghaleb, D.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Hayakawa, T.

G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
[Crossref]

Hirao, K.

J. Qiu and K. Hirao, “γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses,” J. Mater. Sci. Lett. 20(8), 691–693 (2001).
[Crossref]

Hofmeister, H.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Holzenkampfer, E.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

Hua, L. C.

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Hulliger, J.

P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
[Crossref]

Izumitani, T.

Jahn, U.

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Jalali, B.

Jun, W. X.

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Kakuta, N.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Khotimchenko, V. S.

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Kilah, N.

Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
[Crossref]

Kordesch, M. E.

A. R. Zanatta and M. E. Kordesch, “On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon,” J. Appl. Phys. 116(7), 073511 (2014).
[Crossref]

Kurita, A.

Kushida, T.

Lannin, J. S.

J. S. Lannin, “Local structural order in amorphous semiconductors,” Phys. Today 41(7), 28–35 (1988).
[Crossref]

Lauer, H. V.

H. V. Lauer and F. K. Fong, “Role of the 4f55d band in the radiationless 5D1→5D0 coupling in BaCl2:Sm2+ and BaBr2:Sm2+,” J. Chem. Phys. 65(8), 3108–3117 (1976).
[Crossref]

Lawson, J. K.

Lin, J.

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Lockwood, D. J.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Macfarlane, R. M.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Malchukova, E.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

Malinovska, D. D.

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Matsukawa, M.

Mikhail, P.

P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
[Crossref]

Min, T. W.

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Mizushima, T.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Morimo, R.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Morkel, P. R.

M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
[Crossref]

Namikawa, H.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Nathan, M. I.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Nesheva, D.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Nogami, M.

G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
[Crossref]

M. Nogami and K. Suzuki, “Fast spectral hole burning in Sm2+-doped Al2O3-SiO2 glasses,” Adv. Mater. 14(12), 923–926 (2002).
[Crossref]

M. Nogami and Y. Abe, “Sm2+-doped silicate glasses prepared by a sol-gel process,” Appl. Phys. Lett. 65(10), 1227–1229 (1994).
[Crossref]

Nunes, L.

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett. 72(24), 3127–3129 (1998).
[Crossref]

Okumura, H.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Park, G. J.

G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
[Crossref]

Payne, S. A.

Perakis, A.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Petite, G.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

Pinkzuk, A.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Pivin, J. C.

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Pivovarov, S. S.

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Prokhorova, T. I.

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Qin, G. G.

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Qiu, J.

J. Qiu and K. Hirao, “γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses,” J. Mater. Sci. Lett. 20(8), 691–693 (2001).
[Crossref]

Ramseyer, K.

P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
[Crossref]

Raptis, C.

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

Reisfeld, R.

R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).

Ribeiro, C. T. M.

C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).

C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Riley, M.

Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
[Crossref]

Ru, N. Y.

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Shelby, R. M.

Siu Li, M.

C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
[Crossref]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

Smith, J. E.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Sokolova, A. P.

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Sorokin, P. P.

P. P. Sorokin and M. J. Stevenson, “Solid-state optical maser using divalent Samarium in Calcium fluoride,” IBM J. Res. Develop. 5(1), 56–58 (1961).
[Crossref]

Stevenson, M. J.

P. P. Sorokin and M. J. Stevenson, “Solid-state optical maser using divalent Samarium in Calcium fluoride,” IBM J. Res. Develop. 5(1), 56–58 (1961).
[Crossref]

Stuke, J.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

Stutzmann, M.

M. Stutzmann, “Optical properties of silicon nanostructures,” Phys. Stat. Sol. 192(2), 273–286 (1995).
[Crossref]

Suzuki, K.

M. Nogami and K. Suzuki, “Fast spectral hole burning in Sm2+-doped Al2O3-SiO2 glasses,” Adv. Mater. 14(12), 923–926 (2002).
[Crossref]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Townsend, J. E.

M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
[Crossref]

Tsukune, A.

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Udajawa, Y.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Ueno, A.

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Vassileva, M. S.

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Vuchkov, A.

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

Winnacker, A.

Yamada, M.

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Yao, G. Q.

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Zanatta, A. R.

A. R. Zanatta, “An alternative experimental approach to produce rare-earth-doped SiOx films,” J. Appl. Phys. 119(14), 145302 (2016).
[Crossref]

A. R. Zanatta and M. E. Kordesch, “On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon,” J. Appl. Phys. 116(7), 073511 (2014).
[Crossref]

A. R. Zanatta, “Visible light emission and energy transfer processes in Sm-doped nitride films,” J. Appl. Phys. 111(12), 123105 (2012).
[Crossref]

C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
[Crossref]

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett. 82(9), 1395–1397 (2003).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).

C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett. 72(24), 3127–3129 (1998).
[Crossref]

Zeng, Q.

Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
[Crossref]

Zi, X. Z.

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Adv. Mater. (2)

M. Nogami and K. Suzuki, “Fast spectral hole burning in Sm2+-doped Al2O3-SiO2 glasses,” Adv. Mater. 14(12), 923–926 (2002).
[Crossref]

C. T. M. Ribeiro, F. Alvarez, and A. R. Zanatta, “Red and green light emission from samarium-doped amorphous aluminum nitride films,” Adv. Mater. 14(16), 1154–1157 (2002).
[Crossref]

Appl. Phys. Lett. (4)

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett. 82(9), 1395–1397 (2003).
[Crossref]

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett. 72(24), 3127–3129 (1998).
[Crossref]

M. Nogami and Y. Abe, “Sm2+-doped silicate glasses prepared by a sol-gel process,” Appl. Phys. Lett. 65(10), 1227–1229 (1994).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Colloids Surf. (1)

A. L. Demskaya, T. I. Prokhorova, S. S. Pivovarov, A. P. Sokolova, and V. S. Khotimchenko, “Effect of sol-gel processing on luminescence of Sm-doped silica,” Colloids Surf. 63(1-2), 163–171 (1992).
[Crossref]

Electron. Lett. (1)

M. C. Farries, P. R. Morkel, and J. E. Townsend, “Sm3+-doped glass laser operating at 651 nm,” Electron. Lett. 24(11), 709–711 (1988).
[Crossref]

IBM J. Res. Develop. (1)

P. P. Sorokin and M. J. Stevenson, “Solid-state optical maser using divalent Samarium in Calcium fluoride,” IBM J. Res. Develop. 5(1), 56–58 (1961).
[Crossref]

J. Appl. Phys. (6)

A. R. Zanatta, “An alternative experimental approach to produce rare-earth-doped SiOx films,” J. Appl. Phys. 119(14), 145302 (2016).
[Crossref]

A. R. Zanatta and M. E. Kordesch, “On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon,” J. Appl. Phys. 116(7), 073511 (2014).
[Crossref]

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52(6), 4241–4243 (1981).
[Crossref]

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films,” J. Appl. Phys. 92(8), 4678–4683 (2002).
[Crossref]

A. R. Zanatta, “Visible light emission and energy transfer processes in Sm-doped nitride films,” J. Appl. Phys. 111(12), 123105 (2012).
[Crossref]

C. T. M. Ribeiro, M. Siu Li, and A. R. Zanatta, “Spectroscopic study of Nd-doped amorphous SiN films,” J. Appl. Phys. 96(2), 1068–1073 (2004).
[Crossref]

J. Appl. Phys. Lett. (1)

A. R. Zanatta, C. T. M. Ribeiro, and F. Alvarez, “X-ray photoelectron spectroscopy study of rare-earth-doped amorphous silicon-nitrogen films,” J. Appl. Phys. Lett. 93(4), 1948–1953 (2003).

J. Chem. Phys. (1)

H. V. Lauer and F. K. Fong, “Role of the 4f55d band in the radiationless 5D1→5D0 coupling in BaCl2:Sm2+ and BaBr2:Sm2+,” J. Chem. Phys. 65(8), 3108–3117 (1976).
[Crossref]

J. Electrochem. Soc. (1)

R. Morimo, T. Mizushima, Y. Udajawa, N. Kakuta, A. Ueno, H. Okumura, and H. Namikawa, “Enhancement of fluorescent intensity of SiO2:Sm glass by Al codoping and local structure around Sm by EXAFS study,” J. Electrochem. Soc. 137(7), 2340–2343 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

Q. Zeng, N. Kilah, and M. Riley, “The luminescence of Sm2+ in alkaline earth borophosphates,” J. Lumin. 101(3), 167–174 (2003).
[Crossref]

J. Mater. Sci. Lett. (1)

J. Qiu and K. Hirao, “γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses,” J. Mater. Sci. Lett. 20(8), 691–693 (2001).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. S. Vassileva, A. Vuchkov, O. Angelov, D. D. Malinovska, and J. C. Pivin, “Sm3+ photoluminescence in co-sputtered SiO2 thin films,” J. Mater. Sci. Mater. Electron. 14(10/12), 853–854 (2003).
[Crossref]

J. Non-Crystal. Solids (3)

R. Reisfeld, A. Bornstein, and L. Boehm, “Variation of fluorescence intensities and lifetime of Sm3+ and Tb3+ with As2O3 content in arsenic borax glasses,” J. Non-Crystal. Solids 17, 158–168 (1975).

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation,” J. Non-Crystal. Solids 353, 2397–2402 (2007).

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

G. J. Park, T. Hayakawa, and M. Nogami, “Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses,” J. Phys. Condens. Matter 15(8), 1259–1265 (2003).
[Crossref]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

J. Lin, A. Tsukune, M. Yamada, G. Q. Yao, and G. G. Qin, “Contribution of excitation in Si nanoparticles to Sm photoluminescence from Sm-doped porous silicon,” Phys. Rev. B 57(4), R2045–R2048 (1998).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinkzuk, “Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[Crossref]

Phys. Stat. Sol. (2)

M. Stutzmann, “Optical properties of silicon nanostructures,” Phys. Stat. Sol. 192(2), 273–286 (1995).
[Crossref]

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties of a-Ge,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Phys. Today (1)

J. S. Lannin, “Local structural order in amorphous semiconductors,” Phys. Today 41(7), 28–35 (1988).
[Crossref]

Sol. St. Commun. (1)

P. Mikhail, J. Hulliger, and K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+ (n = 2, 3) in oxide environments,” Sol. St. Commun. 112(9), 483–488 (1999).
[Crossref]

Wuji Huaxue Xuebao (1)

T. W. Min, L. C. Hua, N. Y. Ru, W. X. Jun, and X. Z. Zi, “Unique photoluminescence in SiO2:Sm prepared by sol-gel process,” Wuji Huaxue Xuebao 25(4), 635–640 (2009).

Other (4)

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991), Chap. 4.

G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley Interscience, 1968).

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991), Chap. 3.

B. Henderson and G. Imbush, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989), Chapter 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Optical transmission spectra of a Sm-doped SiOx film, as-deposited, and after thermal annealing at 250, 500, 750, and 1000 °C (30 min each) under a flow of oxygen. The spectra were obtained from films deposited on fused silica, which spectrum is also shown. The fringes in the spectra appear due to photon interference effects at the film-substrate interfaces. (b) Tauc's optical bandgap as determined from the (αE)1/2 versus E representation of some Sm-doped SiOx films: as-deposited, and after annealing at 750 and 1000 °C.
Fig. 2
Fig. 2 (a) Raman scattering spectra (632.8 nm photon excitation under a power density of ~350 μW μm−2) of Sm-doped a-SiOx films, as-deposited, and after thermal annealing at increasing temperatures. The spectrum of a crystalline Si sample (commercial Si wafer) is also shown for comparison. All spectra were normalized for comparison purposes. (b) Raman scattering intensity ratio involving the TA and TO phonon modes, characteristic of amorphous silicon, as a function of the annealing temperature. The ITA/ITO ratio refers to Sm-doped and undoped SiOx films (see inset) and is proportional to the atom disorder present in the samples.
Fig. 3
Fig. 3 (a) PL spectra of a Sm-doped SiOx film (after annealing at 1000 °C) as obtained from different photon excitation wavelengths (λexc). The spectra were achieved at 10 K, normalized (see the multiplying factors), and vertically shifted for comparison reasons. (b) Same as in (a), except for the temperature of measurement (300 K). Labels A, B, C, and D (E and F) denote transitions due to Sm3+ (Sm2+) ions. The stars indicate features either due to the Raman signal of crystalline silicon [first and second order of transverse-optical modes at ~547 nm (or 520 cm−1) and at ~561 nm (or 980 cm−1), respectively], or associated with a laser artifact (at ~592 nm).
Fig. 4
Fig. 4 Photoluminescence spectra of a Sm-free SiOx film (after annealing at 1000 °C), as obtained with 488.0 nm photon excitation at: (a) 10 K, and (b) 300 K. The spectra of the Sm-doped SiOx film (annealed at 1000 °C), acquired following exactly the same experimental conditions, are also shown for comparison. The labels denote optical transitions due to Sm3+ (A, B, C, and D) and Sm2+ (E and F) ions. Despite the use of arbitrary units, the PL intensity of all spectra can be compared.
Fig. 5
Fig. 5 Photoluminescence intensity due to Sm3+ (4G5/26H9/2, transition C at 649 nm) and Sm2+ (5D07F0,7F1 transition E at 685 nm) ions as a function of the excitation wavelength, at: (a) 10 K, and (b) 300 K. The PL intensity associated with the SiOx matrix (broad signal at ~580 nm) is also shown. Despite the use of arbitrary units, all PL intensity values can be compared. The lines joining the data points are just guides to the eye.
Fig. 6
Fig. 6 Photoluminescence intensity due to (a) Sm3+ (at 649 nm), and (b) Sm2+ (at 685 nm) ions. The data were obtained from a Sm-doped SiOx film (annealed at 1000 °C) following different photon excitation wavelengths. The photoluminescence excitation spectra of a Sm-doped SrB4O7 sample [41], and the energy levels (or bands) associated with Sm3+ (or Sm2+) ions in LaCl3 (or CaF2) are also shown for comparison [14] ([40]). All experimental data were obtained at 300 K.
Fig. 7
Fig. 7 Diagram of the main PL transitions and energy levels (or bands) associated with the Sm3+ and Sm2+ ions (and SiOx matrix). The A−F labels refer to the PL transitions identified in Table 1. The photon excitation used in the present study, as provided by different laser sources, is also depicted.

Tables (1)

Tables Icon

Table 1 Main visible and near-infrared optical transitions exhibted by the present Sm-doped SiOx film. The transitions are due to Sm3+ or Sm2+ ions and, as indicated in Figs. 3 and 4, they were identified by letters A−F. The most intense PL signals appear in bold and those involving Sm2+ ions were denoted in Italics. PL features evident only at 300 K were indicated between brackets. In addition to A−F, other very weak transitions could be detected and were associated with the Sm2+ ions: at ~766 nm (5D07F3) and ~814 nm (5D07F4).

Metrics