Abstract

We report on the influence of the applied UV dosage on the fabrication of planar Bragg gratings in cyclo-olefin copolymers. Integrated waveguides with inscribed gratings are fabricated simultaneously using a single writing step technique and characterized by measuring the reflected and transmitted spectra. In addition, the effect of length and width of both waveguide and Bragg grating on the reflectivity and attenuation are studied using the cut-back method. The results show that in this material class, integrated waveguides with an attenuation as low as 1.2 dB/cm and Bragg gratings with a reflectivity of up to 99% can be realized. Most strikingly, we demonstrate that Bragg gratings with a length of only 2.1 mm still exhibit a distinct Bragg reflection facilitating miniaturized Bragg grating applications. Moreover, we demonstrate that the refractive index sensitivity of the planar Bragg gratings strongly depends on the UV dosage, in turn facilitating to tailor grating properties according device requirements in sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of Bragg gratings in planar PMMA: impact of UV dosage and thermal annealing

M. Rosenberger, M. Girschikofsky, B. Schmauss, and R. Hellmann
Opt. Express 24(20) 22563-22572 (2016)

Compressive and tensile strain sensing using a polymer planar Bragg grating

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann
Opt. Express 22(5) 5483-5490 (2014)

Planar Bragg grating in bulk Polymethylmethacrylate

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann
Opt. Express 20(25) 27288-27296 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [Crossref]
  2. F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
    [Crossref]
  3. P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
    [Crossref]
  4. T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).
  5. R. K. Jena and C. Y. Yue, “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics 6(1), 012822 (2012).
    [Crossref] [PubMed]
  6. D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
    [Crossref]
  7. S. Dahms, F. Bundgaard, and O. Geschke, “A new approach in polymer waveguide fabrication,” in Multi-material Micro Manufacture (Elsevier, 2005).
  8. F. Bundgaard, “Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclic Olefin Copolymer (COC),” Ph.D. Thesis, Technical University of Denmark, 2006.
  9. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
    [Crossref]
  10. D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
    [Crossref]
  11. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  12. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  13. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  14. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  15. M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
    [Crossref]
  16. M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
    [Crossref] [PubMed]
  17. G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
    [Crossref]
  18. See www.topas.com.
  19. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
    [Crossref] [PubMed]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  21. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.
  22. J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
    [Crossref]
  23. S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
    [Crossref]

2016 (1)

2015 (3)

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

2013 (2)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

2012 (2)

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

R. K. Jena and C. Y. Yue, “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics 6(1), 012822 (2012).
[Crossref] [PubMed]

2011 (2)

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2010 (1)

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

2006 (1)

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
[Crossref]

2005 (1)

D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
[Crossref]

2004 (1)

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

2003 (1)

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

2001 (2)

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

1999 (1)

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Balslev, S.

D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
[Crossref]

Bang, O.

Bauer, H. D.

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

Belle, S.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Bundgaard, F.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
[Crossref]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Ehrfeld, W.

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

Eisenbeil, W.

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

Emiliyanov, G.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fasano, A.

Geschke, O.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
[Crossref]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Grossel, M. C.

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Hellmann, R.

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Hessler, S.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Jena, R. K.

R. K. Jena and C. Y. Yue, “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics 6(1), 012822 (2012).
[Crossref] [PubMed]

Johnson, P.

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

Kalli, K.

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

Khanarian, G.

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Kiriakidis, G.

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Koller, G.

Koo, J. S.

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Kowal, D.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Kristensen, A.

D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
[Crossref]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Kutter, J. P.

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

Landsiedel, J.

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

Markos, C.

Mergo, P.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Nielsen, K.

Nielsen, T.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Nilsson, D.

D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
[Crossref]

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Nunes, P. S.

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

Ohlsson, P. D.

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

Ordeig, O.

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Perozziello, G.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
[Crossref]

Pissadakis, S.

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Rasmussen, H. K.

Reekie, L.

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Riziotis, C.

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Rosenberger, M.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Sabbert, D.

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

Schmauss, B.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Shi, P.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Smith, P. G.

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Statkiewicz-Barabach, G.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Stefani, A.

Szabo, P.

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Urbanczyk, W.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Webb, D. J.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

Wilkinson, J. S.

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Williams, R. B.

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Woyessa, G.

Yuan, W.

Yue, C. Y.

R. K. Jena and C. Y. Yue, “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics 6(1), 012822 (2012).
[Crossref] [PubMed]

Zervas, M. N.

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Appl. Phys. Lett. (1)

S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, “Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining,” Appl. Phys. Lett. 78(6), 694–696 (2001).
[Crossref]

Appl. Surf. Sci. (1)

D. Sabbert, J. Landsiedel, H. D. Bauer, and W. Ehrfeld, “ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC),” Appl. Surf. Sci. 150(1-4), 185–189 (1999).
[Crossref]

Biomicrofluidics (1)

R. K. Jena and C. Y. Yue, “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics 6(1), 012822 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Micromech. Microeng. (1)

D. Nilsson, S. Balslev, and A. Kristensen, “A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC),” J. Micromech. Microeng. 15(2), 296–300 (2005).
[Crossref]

J. Opt. (1)

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (1)

T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22(4), 1–23 (2004).

Microfluid. Nanofluidics (1)

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluid. Nanofluidics 9(2–3), 145–161 (2010).
[Crossref]

Opt. Eng. (1)

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Opt. Express (4)

Opt. Mater. (1)

J. S. Koo, P. G. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. (1)

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems,” Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(11), 1625–1632 (2006).
[Crossref]

Sens. Actuators A Phys. (1)

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

Sensors (Basel) (2)

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Other (4)

S. Dahms, F. Bundgaard, and O. Geschke, “A new approach in polymer waveguide fabrication,” in Multi-material Micro Manufacture (Elsevier, 2005).

F. Bundgaard, “Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclic Olefin Copolymer (COC),” Ph.D. Thesis, Technical University of Denmark, 2006.

See www.topas.com.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of a polymer planar Bragg grating in COC substrate including its dimensions. The blue arrow indicates the direction of the cut-back measurement.
Fig. 2
Fig. 2 Reflected (a-c) and transmitted (d-f) spectra of polymer planar Bragg gratings fabricated with different number of pulses. These exemplified gratings are written with 5.000 (a,d), 20.000 (b,e), and 40.000 (c,f) pulses.
Fig. 3
Fig. 3 Influence of the writing parameters on the spectral characteristics of the PPBGs. a) FWHM bandwidth, b) transmission dip, and c) transmitted power.
Fig. 4
Fig. 4 Reflectivity of the PPBGs fabricated using different number of pulses.
Fig. 5
Fig. 5 Results of the cut back measurement revealing different attenuations of the waveguide and the Bragg grating.
Fig. 6
Fig. 6 Spectral characteristics of the PPBG indicate a) expanding FWHM bandwidth and b) reduced reflectivity with a decreasing grating length.
Fig. 7
Fig. 7 Reflected spectrum of a PPBG with a grating length of only 2.1 mm.
Fig. 8
Fig. 8 Influence of the waveguide width on a) the reflectivity and b) the transmitted power.
Fig. 9
Fig. 9 Refractive index sensitivity of PPBGs fabricated with different number of pulses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B =2n eff Λ
R=1 10 T d 10

Metrics