Abstract

Tm3+ doped lead silicate glasses with good thermal stability were prepared by the melt-quenching method. Based on the absorption and emission spectra, Judd-Ofelt intensity parameters, absorption and emission cross sections, gain spectra, and σe × FWHM were calculated and analyzed. These results suggest that Tm3+ doped lead silicate glasses are promising as mid-infrared laser materials. Tm3+ doped lead silicate glass single mode (SM) fibers with cladding diameter of 125 μm and core diameter of 8.5 μm were then fabricated by the rod-in-tube technique. The Tm3+ doping concentration reached as high as 4.545 × 1020 ions/cm3. ~2.0 μm amplified spontaneous emission (ASE) was realized in a 3.5-cm-long as-drawn SM fiber when pumped by a homemade single mode 1560 nm fiber laser. The results indicate that these Tm3+ doped lead silicate glass single mode fibers are promising fiber material for 2.0 μm fiber laser applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser

Xin Wen, Guowu Tang, Jinwen Wang, Xiaodong Chen, Qi Qian, and Zhongmin Yang
Opt. Express 23(6) 7722-7731 (2015)

Heavily Ho3+-doped lead silicate glass fiber for ~2 μm fiber lasers

Xueqiang Liu, Peiwen Kuan, Dahai Li, Song Gao, Xin Wang, Lei Zhang, Lili Hu, and Danping Chen
Opt. Mater. Express 6(4) 1093-1098 (2016)

Spectroscopic properties and quenching mechanism of 2 μm emission in Ho3+ doped germanate glasses and fibers

Xiaokang Fan, Peiwen Kuan, Kefeng Li, Lei Zhang, Dahai Li, and Lili Hu
Opt. Mater. Express 5(6) 1356-1365 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [Crossref] [PubMed]
  2. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  3. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  4. S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
    [Crossref]
  5. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  6. J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
    [Crossref]
  7. W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
    [Crossref]
  8. R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
    [Crossref]
  9. Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
    [Crossref]
  10. K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
    [Crossref] [PubMed]
  11. J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
    [Crossref]
  12. B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
    [Crossref]
  13. M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
    [Crossref]
  14. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  15. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]
  16. X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
    [Crossref]
  17. X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
    [Crossref]
  18. W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).
  19. J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
    [Crossref] [PubMed]
  20. M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
    [Crossref]
  21. X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
    [Crossref]
  22. N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).
  23. T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
    [Crossref]
  24. R. Wang, X. Meng, F. Yin, Y. Feng, G. Qin, and W. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
    [Crossref]
  25. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  26. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  27. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
    [Crossref] [PubMed]
  28. J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
    [Crossref]
  29. Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
    [Crossref]
  30. A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
    [Crossref]
  31. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
    [Crossref] [PubMed]
  32. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm33+, Ho3+, and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  33. F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
    [Crossref] [PubMed]
  34. X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
    [Crossref]
  35. R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
    [Crossref]
  36. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
    [Crossref]
  37. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
    [Crossref]
  38. L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
    [Crossref]

2016 (2)

2015 (4)

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

2014 (4)

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

2013 (3)

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

R. Wang, X. Meng, F. Yin, Y. Feng, G. Qin, and W. Qin, “Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications,” Opt. Mater. Express 3(8), 1127–1136 (2013).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

2012 (2)

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

2010 (4)

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

2009 (3)

2006 (2)

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

2005 (1)

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

2003 (1)

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

2002 (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm33+, Ho3+, and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

1994 (1)

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

1993 (3)

A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
[Crossref]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

1992 (1)

R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
[Crossref]

1978 (2)

N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

1972 (1)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Amzajerdian, F.

Bai, G.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Balda, R.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Barnes, N. P.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

Benson, T. M.

Binks, D.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Brawer, S. A.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Brown, C.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Bruns, D. L.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Casperson, L. W.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[Crossref]

Chaussedent, S.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Chen, D.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

Chen, D. D.

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Chen, X.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Cheng, J.

Clarkson, W. A.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Davey, S. T.

R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
[Crossref]

Dorosz, D.

Dorosz, J.

Dupriez, P.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Fan, S.

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

Fan, X.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Fang, Y.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Feng, Y.

Fernandez, J.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Ferrari, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Ferraris, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Furniss, D.

Furukawa, T.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Fusari, F.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Gao, S.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

Gebavi, H.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Geng, J.

Geng, J. H.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

Gruber, J. B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Guo, Y.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Hale, C. P.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Hannon, S. M.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Henderson, S. W.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Hirao, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Hu, L.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

Hu, L. L.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Huang, F.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

Hutchinson, J. A.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Iwamoto, N.

N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm33+, Ho3+, and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

Jackson, S. D.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Jeong, Y.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Jha, A.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Jiang, S.

Jiang, S. B.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

Jiang, Z. H.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Jing, X.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kochanowicz, M.

Kowal, M.

Kuan, P.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Lagatsky, A.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Li, B.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, K.

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

Li, M.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Li, R.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, W.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Liao, M.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Liu, L. X.

Liu, X.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+ Er3+ doped fluoride glass sensitized by Ce33+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

Liu, X. Y.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Lousteau, J.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Luo, T.

Magee, J. R.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Meng, X.

Milanese, D.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Miyago, M.

N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).

Morinaga, K.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

Nageno, Y.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

Nilsson, J.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm33+, Ho3+, and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Peng, M. Y.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Percival, R. M.

R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
[Crossref]

Peyghambarian, N.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

Piriou, B.

A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
[Crossref]

Pisarska, J.

Pisarski, W. A.

Qian, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Qin, G.

Qin, W.

Richards, B.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Ruan, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Sahu, J. K.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Sardar, D. K.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Seddon, A. B.

Shen, D. Y.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Shen, S. X.

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Sibbett, W.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Soga, N.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Sujecki, S.

Sun, H.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Suni, P. J.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Szebesta, D.

R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
[Crossref]

Takebe, H.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

Tamai, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Tanabe, S.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Tang, G.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Tang, Z.

Tian, C.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Tian, Y.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Trussell, C. W.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Tsang, Y.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Tsunawaki, Y.

N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wang, J.

Wang, L.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Wang, Q.

Wang, R.

Wang, S.

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

Wang, W. C.

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Wang, X.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

Wei, T.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wen, L.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Wen, X.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

White, W. B.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Wu, J. F.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

Yang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

Yang, Z.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Yariv, A.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[Crossref]

Yin, F.

Yu, C.

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Yuan, J.

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Yuen, E. H.

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Zahra, A. M.

A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
[Crossref]

Zahra, C. Y.

A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
[Crossref]

Zandi, B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Zhang, G.

Zhang, J.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Zhang, L.

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

Zhang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

Zhang, Q. Y.

W. C. Wang, J. Yuan, L. X. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 1(2), 138–150 (2015).

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Zmojda, J.

Electron. Lett. (2)

R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser,” Electron. Lett. 28(7), 671–673 (1992).
[Crossref]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 μm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped germanate glass fiber laser,” IEEE Photonics Technol. Lett. 18(2), 334–336 (2006).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

J. Appl. Phys. (4)

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+ /Yb3+ /Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

X. Wang, S. Fan, K. Li, L. Zhang, S. Wang, and L. Hu, “Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass,” J. Appl. Phys. 112(10), 103521 (2012).
[Crossref]

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lumin. (3)

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphates glass,” J. Lumin. 162, 58–62 (2015).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+ -doped silicate glass for 1.8 μm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

J. Mater. Sci. (1)

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

J. Non-Cryst. Solids (3)

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids 169(3), 288–294 (1994).
[Crossref]

A. M. Zahra, C. Y. Zahra, and B. Piriou, “DSC and Raman studies of lead borate and lead silicate glasses,” J. Non-Cryst. Solids 155(1), 45–55 (1993).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+ /Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Laser Phys. Lett. (1)

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

M. Liao, H. Sun, L. Wen, Y. Fang, and L. L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphates glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Mater. Lett. (1)

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 μm laser output in Tm3+ -doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Mater. Res. Bull. (1)

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ~ 2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm33+, Ho3+, and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass,” Phys. Rev. B Condens. Matter 47(5), 2507–2514 (1993).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6, 20344 (2016).
[Crossref] [PubMed]

Trans. JWRI (1)

N. Iwamoto, Y. Tsunawaki, and M. Miyago, “Structural study of vitreous and crystalline PbO-SiO2 system by Raman spectroscopy,” Trans. JWRI 7(2), 149–154 (1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 DSC curves of the SPKB and SPKB-1.0 glasses.
Fig. 2
Fig. 2 Raman spectrum of SPKB-1.0 glass. The inset shows the Raman bands in the frequency region from 800 to 1200 cm−1 with five peaks are observed by Gaussian fitting.
Fig. 3
Fig. 3 Absorption spectra of Tm3+ doped lead silicate glasses. The inset shows the transmittance spectrum of the SPKB-1.0 glass.
Fig. 4
Fig. 4 Emission spectra of Tm3+ doped lead silicate glasses pumped by an 808 nm LD. The inset shows fluorescence decay curve of 1850 nm emission in the SPKB-1.0 glass.
Fig. 5
Fig. 5 (a) Absorption and emission cross sections and (b) the calculated gain coefficient of the SPKB-1.0 glass.
Fig. 6
Fig. 6 (a) The refractive indices of the core and cladding glasses and numerical aperture of the fiber as a function of wavelength; (b) Cutback measurement of Tm3+ doped lead silicate glass fiber.
Fig. 7
Fig. 7 (a) Schematic diagram of the Tm3+ doped lead silicate SM fiber ASE source using the pump excitation at 1560 nm; inset: the photomicrograph of Tm3+ doped lead silicate SM fiber cross section. (b) ASE spectra of as-drawn fiber in the wavelength range of 1900–2000 nm.

Tables (1)

Tables Icon

Table 1 J-O intensity parameters of Tm3+ in various lead silicate glass systems

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α OH = 1 l ln T 0 T
f exp = 2.303m c 2 π e 2 Nl λ ¯ 2 OD(λ) dλ
f cal = 8 π 2 mc 3h λ ¯ ( 2J+1 ) ( n 2 +2 ) 2 9n Ω t | ( S,L ) J U ( t ) ( S , L ) J ) | 2
σ a ( λ )= 2.303 Nl log( I 0 I )
σ e FL = A r 8π n 2 c λ 5 I( λ ) λI( λ )d( λ )
G( λ )=N[ p σ e ( λ )( 1p ) σ a ( λ ) ]
n 2 ( λ )=1+S λ 2 λ 2 λ 0 2
NA= n core 2 n cladding 2
V= 2πa λ NA

Metrics