Abstract

Graphene photodetectors grown by chemical vapor deposition are fabricated for unfocused laser and white light sensing. The unfocused light enlarges the illuminated graphene area and mimics the real-life sensing conditions, yielding a responsivity of 104 mA/W at room temperature without enhancing absorbance by waveguide and plasmonics. The devices are based on positive photoconductivity from the electron-hole photocarrier pairs and the bolometric-effect-induced negative photoconductivity. The buried off-center local gate induces a net internal potential in the graphene. The relative strength of the two photoconductivities depends on the gate voltage. The technology is scalable, which is a step ahead toward real applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors

Yun Gao, Guodong Zhou, Ni Zhao, Hon Ki Tsang, and Chester Shu
Opt. Lett. 43(6) 1399-1402 (2018)

High-performance graphene photodetector using interfacial gating

Xitao Guo, Wenhui Wang, Haiyan Nan, Yuanfang Yu, Jie Jiang, Weiwei Zhao, Jinhuan Li, Zainab Zafar, Nan Xiang, Zhonghua Ni, Weida Hu, Yumeng You, and Zhenhua Ni
Optica 3(10) 1066-1070 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  2. M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  3. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
    [Crossref]
  4. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  5. C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
    [Crossref]
  6. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
    [Crossref]
  7. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
    [Crossref] [PubMed]
  8. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
    [Crossref] [PubMed]
  9. X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
    [Crossref]
  10. K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
    [Crossref]
  11. J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
    [Crossref]
  12. C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
    [Crossref]
  13. L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).
  14. R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
    [Crossref]
  15. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
    [Crossref] [PubMed]

2016 (1)

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

2015 (1)

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

2014 (2)

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

2013 (5)

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

2012 (3)

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

2011 (1)

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

2010 (1)

M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

2009 (1)

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Angel, K. T. T.

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Avouris, P.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Bachmann, D.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Beams, R.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Chakarov, D.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Chakraborty, C.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Chen, B.

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

Chen, H.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Chen, X.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Chua, D. H. C.

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Cole, M. T.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

de la Rosa, C. J. L.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

Deng, J.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Freitag, M.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Fromherz, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Furchi, M. M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Gabor, N. M.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gao, Y.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Golizadeh-Mojarad, R.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Goodfellow, K. M.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Guider, R.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Guo, W.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Humer, M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Hyldgaard, P.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Jarillo-Herrero, P.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Jie, S.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Jun, D.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Kun, X.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Lei, Z.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Levitov, L. S.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Lin, Y. M.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Lindvall, N.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Liu, J.

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Liu, L.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Liu, X.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Löffler, M.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Low, T.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

Ma, Q.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Mingming, M.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Mueller, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nair, N. L.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Nam, Y.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

Novotny, L.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Olsson, E.

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

Peng, L.-M.

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

Perebeinos, V.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Pospischil, A.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Schröder, E.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shi, R.

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Song, J. C. W.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Sun, J.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Taniguchi, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Taychatanapat, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Teo, K. B. K.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Thomas, M.

M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Tsang, J.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Vamivakas, A. N.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Wang, T.

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Watanabe, K.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Weiling, G.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Wicks, G. W.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

Xia, F.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Xie, Y.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Xu, C.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Xu, H.

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

Xu, K.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Xun, M.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Yanxu, Z.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

Yurgens, A.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Zhan, Z.

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Zhang, Z.

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

Zhu, Y.

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, “A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown graphene from metal substrates,” Adv. Mater. Interfaces 3, 1500492 (2016).

Appl. Phys. Lett. (4)

R. Shi, H. Xu, B. Chen, Z. Zhang, and L.-M. Peng, “Scalable fabrication of graphene devices through photolithography,” Appl. Phys. Lett. 102(11), 113102 (2013).
[Crossref]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[Crossref]

C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl. Phys. Lett. 102(2), 022101 (2013).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105(24), 241114 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Xun, K. B. K. Teo, H. Chen, and J. Sun, “Graphene GaN-based Schottky ultraviolet detectors,” IEEE Trans. Electron Dev. 62(9), 2802–2808 (2015).
[Crossref]

IEEE Trans. NanoTechnol. (1)

J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, “Low partial pressure chemical vapor deposition of graphene on copper,” IEEE Trans. NanoTechnol. 11(2), 255–260 (2012).
[Crossref]

Nano Lett. (1)

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

M. Thomas, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Science (1)

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Mask patterns (drawn to scale) used in the device fabrication (three-step photolithography). (b) Schematic illustration of the graphene transistor. The buried gate is placed off-center and has a small overlap with the drain to introduce a net potential in the channel.
Fig. 2
Fig. 2 (a) Typical Raman spectrum of the graphene transferred to SiO2/Si. (b) Typical room temperature gate curve of the graphene transistor fabricated by three-step photolithography. (c) I-V curves of the transistor at several different gate voltages. When Vg = 20 V (“Dirac voltage”) the device shows the lowest current. (d) I-V curves of the device with and without laser illumination when Vg = 20 V and 0 V.
Fig. 3
Fig. 3 Photo response of the device at room temperature when illuminated by unfocused (a) 790 nm laser and (b) white LED. The two figures are qualitatively similar. There are three regimes of the operation. Region 1: Vg is around 20 V and the device shows positive photoconductivity (TP dominating); region 2: Vg is around 0 V showing negative photoconductivity (bolometric photoconductivity dominating); and region 3: Vg is less than ~10 V with much more reduced photo response (TP and bolometric effects balancing out).
Fig. 4
Fig. 4 (a-e) Schematic diagram of the electric potential profile along the graphene channel (the small source-drain bias is neglected for simplicity) at different regimes of Vg. There are local gate induced potentials in the device, where at the left side of the gate the field appears to be somewhat weaker than that at the right. In comparison, the built-in potentials at the graphene-metal junctions are relatively small. Also, they are symmetric at the two electrodes and the effect on the photocarrier transport will be largely canceled out. (f) Schematics of the effect on the transport from the carrier number and mobility change (curve 1) and net internal potential change (curve 2) in three gate voltage regimes. Under illumination, the carrier density n and mobility µ will be modified, as indicated by the arrows. In each Vg regime, the dominant effects are marked with red and bold font.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V g = V O + V Q ,
C O V O = k k 0 S V O d =neS= ( E F v F ) 2 eS π = e 3 V Q 2 S 2 v F 2 π ,
V Q = v F [ πk k 0 ( 2 v F 2 πk k 0 +4 e 3 d V g ') v F πk k 0 ] 2 e 3 d .

Metrics