Abstract

The upconversion emission tuning with size decrease has been achieved through Y3+ or Gd3+ ions doping in lanthanide-doped NaYbF4 nanoparticles prepared by a chemical coprecipitation method. With an increase of the Y3+ or Gd3+ doping concentrations (0−40 mol%), the nanoparticle size is continuously decreased from 250 nm down to 15.8 nm without phase transformation. Compared with Y3+ doping, the particle size decreases more rapidly via Gd3+ doping. Meanwhile, the intensity ratio of red emission to green emission in NaYbF4:2%Er3+ nanoparticles decreases monotonically with increasing Y3+ or Gd3+ doping concentrations, thus producing tunable upconversion emissions. For NaYbF4:2%Tm3+ nanoparticles, the luminescence intensity of the near-infrared upconversion emission at 800 nm was largely enhanced by about 36- and 17-fold for doping of 40 mol% Y3+ and 20 mol% Gd3+, respectively. These results offer an effective strategy to simultaneous control of the size and luminescence properties of lanthanide-doped upconversion nanoparticles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

Ultraviolet and visible upconversion luminescence in Y2O3:Er3+, Gd3+ microcrystals by 1.55  μm excitation

Yuhong Zhang, Shuibing Li, Feng Qin, Zhiguo Zhang, and Zhenwen Dai
J. Opt. Soc. Am. B 32(9) 1856-1860 (2015)

Near-infrared upconversion of Nd through Gd-mediated interfacial energy transfer in core-shell nanoparticles

Lili Tao, Xuelong Liu, Junshan He, Yajun Lou, Yonghui Li, Yu Zhao, and Bo Zhou
Opt. Mater. Express 8(8) 2449-2454 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
    [Crossref]
  2. H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl. 48(20), 3572–3582 (2009).
    [Crossref] [PubMed]
  3. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
    [Crossref]
  4. Z. Wang, S. Lou, and P. Li, “Single phase tunable warm white-light-emitting Sr3La(PO4)3:Eu2+, Sm3+ phosphor for white LEDs,” Opt. Mater. Express 6(1), 114–124 (2016).
    [Crossref]
  5. M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
    [Crossref] [PubMed]
  6. P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
    [Crossref]
  7. D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
    [Crossref]
  8. D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
    [Crossref] [PubMed]
  9. D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
    [Crossref] [PubMed]
  10. D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
    [Crossref]
  11. D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
    [Crossref]
  12. X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
    [Crossref] [PubMed]
  13. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
    [Crossref] [PubMed]
  14. G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
    [Crossref] [PubMed]
  15. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  16. D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
    [Crossref] [PubMed]
  17. Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
    [Crossref] [PubMed]
  18. Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
    [Crossref] [PubMed]
  19. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
    [Crossref]
  20. Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
    [Crossref] [PubMed]
  21. X. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
    [Crossref]
  22. X. Huang, “Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
    [Crossref]
  23. X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
    [Crossref] [PubMed]
  24. S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
    [Crossref] [PubMed]
  25. M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
    [Crossref] [PubMed]
  26. X. Huang, “Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
    [Crossref] [PubMed]
  27. N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
    [Crossref]
  28. Q. Zhan, B. Wang, X. Wen, and S. He, “Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing,” Opt. Mater. Express 6(4), 1011–1023 (2016).
    [Crossref]
  29. D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6(1), 270–278 (2016).
    [Crossref]
  30. Y. Wei, X. Li, and H. Guo, “Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics,” Opt. Mater. Express 4(7), 1367–1372 (2014).
    [Crossref]
  31. G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
    [Crossref]
  32. C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
    [Crossref]
  33. X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4:Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3(7), 989–999 (2013).
    [Crossref]
  34. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
    [Crossref] [PubMed]
  35. M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
    [Crossref] [PubMed]
  36. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref] [PubMed]
  37. H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
    [Crossref] [PubMed]
  38. J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
    [Crossref]
  39. Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
    [Crossref]
  40. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  41. T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
    [Crossref]
  42. X. Huang, “Synthesis, multicolor tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles,” J. Mater. Sci. 51(7), 3490–3499 (2016).
    [Crossref]
  43. G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
    [Crossref] [PubMed]
  44. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref] [PubMed]
  45. S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
    [Crossref]
  46. F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
    [Crossref]
  47. G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
    [Crossref] [PubMed]
  48. H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
    [Crossref] [PubMed]
  49. X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
    [Crossref] [PubMed]
  50. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
    [Crossref] [PubMed]
  51. H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
    [Crossref] [PubMed]

2016 (8)

Z. Wang, S. Lou, and P. Li, “Single phase tunable warm white-light-emitting Sr3La(PO4)3:Eu2+, Sm3+ phosphor for white LEDs,” Opt. Mater. Express 6(1), 114–124 (2016).
[Crossref]

P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
[Crossref]

Q. Zhan, B. Wang, X. Wen, and S. He, “Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing,” Opt. Mater. Express 6(4), 1011–1023 (2016).
[Crossref]

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6(1), 270–278 (2016).
[Crossref]

X. Huang, “Synthesis, multicolor tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles,” J. Mater. Sci. 51(7), 3490–3499 (2016).
[Crossref]

2015 (14)

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
[Crossref] [PubMed]

X. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

X. Huang, “Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
[Crossref] [PubMed]

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

X. Huang, “Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
[Crossref] [PubMed]

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

2014 (7)

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Y. Wei, X. Li, and H. Guo, “Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics,” Opt. Mater. Express 4(7), 1367–1372 (2014).
[Crossref]

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

2013 (5)

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4:Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3(7), 989–999 (2013).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

2011 (1)

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

2010 (5)

S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

2009 (3)

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl. 48(20), 3572–3582 (2009).
[Crossref] [PubMed]

2008 (2)

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

2004 (1)

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Ågren, H.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Aidilibike, T.

Andersson-Engels, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Baride, A.

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Bettinelli, M.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Boyer, J.-C.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Bu, W.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Capobianco, J. A.

X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
[Crossref] [PubMed]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Chen, D.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Chen, G.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Chen, H.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6(1), 270–278 (2016).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, X.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Cheng, Z.

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Cross, W.

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Dai, Y.

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Darbandi, M.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Ding, M.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Dong, H.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Du, P.

P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
[Crossref]

Duan, Z.

Ehlert, O.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Gu, Z.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Guo, H.

Guo, Y.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Han, G.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Han, S.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hao, J.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Hao, Z.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

He, S.

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Höppe, H. A.

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl. 48(20), 3572–3582 (2009).
[Crossref] [PubMed]

Hou, Z.

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Hu, P.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Hu, S.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Hua, Y.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Huang, P.

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, “Synthesis, multicolor tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles,” J. Mater. Sci. 51(7), 3490–3499 (2016).
[Crossref]

X. Huang, “Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
[Crossref] [PubMed]

X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
[Crossref] [PubMed]

X. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

X. Huang, “Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Jin, S.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Ju, J.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Kang, X.

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Ke, J.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Kellar, J. J.

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Kutikov, A.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Li, C.

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

Li, D.

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Li, M.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Li, N.

Li, P.

Li, S.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Li, X.

Li, Z.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Liang, X.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Liao, F.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Liao, M.

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lin, J.

X. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

Liu, C.-H.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Liu, H.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

Liu, J.

N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
[Crossref]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Liu, L.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Liu, S.

Liu, X.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Liu, Y.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lou, S.

Lu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Lu, W.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Luo, W.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Luo, Y.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

Lyu, G.-M.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Ma, P.

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Mao, C.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Mao, C.-B.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

May, P. S.

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Meruga, J. M.

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Mi, C.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Mi, C.-C.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Nann, T.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Niu, N.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Ohishi, Y.

Ohulchanskyy, T. Y.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Pan, G.-H.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

Pandey, R. K.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Patel, N. J.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Peng, W.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Qian, J.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Qin, W.

Qu, H.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Rao, L.

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Ren, G.

S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Ren, Q.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Ren, W.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Shang, M.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Shen, J.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Shi, J.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Shi, S.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Si, R.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Somesfalean, G.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Song, J.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Speghini, A.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Sun, L.-D.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Suzuki, T.

Tang, Z.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Thomann, R.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Tian, G.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Tiwari, R. N.

Tu, D.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Uechi, S.

Vetrone, F.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Wang, B.

Wang, D.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Wang, H.

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, L.

P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
[Crossref]

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6(1), 270–278 (2016).
[Crossref]

Wang, M.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Wang, W.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Wang, W.-X.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Wang, Y.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Wang, Y.-F.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, S. Lou, and P. Li, “Single phase tunable warm white-light-emitting Sr3La(PO4)3:Eu2+, Sm3+ phosphor for white LEDs,” Opt. Mater. Express 6(1), 114–124 (2016).
[Crossref]

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Wei, Y.

Wen, T.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Wen, X.

Wu, X.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Wu, Y.-F.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Xiang, G.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

Xiang, W.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Xiao, H.

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Xiao, J.-W.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

Xing, G.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Xing, H.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Xu, S.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Xu, S.-K.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Xu, Z.-R.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

Xue, X.

Yan, C.-H.

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
[Crossref] [PubMed]

Yan, H.

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

Yan, L.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Yang, B.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Yang, D.

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Yang, P.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Yang, Q.

S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Yang, X.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

Yi, Z.

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Yin, W.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Yoshimura, M.

Yu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Yu, J.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

Yu, J. S.

P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
[Crossref]

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

Yuan, J.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Yuan, Q.

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

Zeng, S.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Zeng, T.

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

Zhai, X.

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Zhan, Q.

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Zhang, J.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

Zhang, M.

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

Zhang, P.

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Zhang, S.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Zhang, X.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Zhang, Y.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

Zhang, Z.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhao, D.

Zhao, H.

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

Zhao, K.

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Zhao, Y.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zheng, X.

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Zhou, L.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

Zhou, Y.

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Zhu, H.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

ACS Nano (5)

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[Crossref] [PubMed]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers,” Adv. Funct. Mater. 20(7), 1166–1172 (2010).
[Crossref]

Adv. Mater. (1)

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

H. A. Höppe, “Recent developments in the field of inorganic phosphors,” Angew. Chem. Int. Ed. Engl. 48(20), 3572–3582 (2009).
[Crossref] [PubMed]

Biomaterials (3)

H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, “A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging,” Biomaterials 33(21), 5384–5393 (2012).
[Crossref] [PubMed]

G. Tian, X. Zheng, X. Zhang, W. Yin, J. Yu, D. Wang, Z. Zhang, X. Yang, Z. Gu, and Y. Zhao, “TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance,” Biomaterials 40, 107–116 (2015).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (6)

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery,” Chem. Soc. Rev. 44(6), 1416–1448 (2015).
[Crossref] [PubMed]

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

X. Liu, C.-H. Yan, and J. A. Capobianco, “Photon upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1299–1301 (2015).
[Crossref] [PubMed]

CrystEngComm (1)

G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, and H. Zhao, “Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals,” CrystEngComm 17(16), 3103–3109 (2015).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF(4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(44), 19021–19027 (2009).
[Crossref] [PubMed]

J. Alloys Compd. (4)

D. Chen, Z. Wan, Y. Zhou, P. Huang, and Z. Ji, “Ce3+ dopants-induced spectral conversion from green to red in the Yb/Ho:NaLuF4 self-crystallized nano-glass-ceramics,” J. Alloys Compd. 654, 151–156 (2016).
[Crossref]

P. Du, L. Wang, and J. S. Yu, “Luminescence properties and energy transfer behavior of single-component NaY(WO4)2:Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes,” J. Alloys Compd. 673, 426–432 (2016).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

X. Huang, “Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

J. Am. Chem. Soc. (3)

Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, and J. Lin, “In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles,” J. Am. Chem. Soc. 135(50), 18920–18929 (2013).
[Crossref] [PubMed]

H. Dong, L.-D. Sun, Y.-F. Wang, J. Ke, R. Si, J.-W. Xiao, G.-M. Lyu, S. Shi, and C.-H. Yan, “Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x Nanocrystals,” J. Am. Chem. Soc. 137(20), 6569–6576 (2015).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

J. Eur. Ceram. Soc. (1)

D. Chen, Z. Wan, Y. Zhou, P. Huang, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Tailoring Er3+ spectrally pure upconversion in bulk nano-glass-ceramics via lanthanide doping,” J. Eur. Ceram. Soc. 36(3), 679–688 (2016).
[Crossref]

J. Mater. Chem. (2)

S. Zeng, G. Ren, and Q. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (4)

T. Wen, W. Luo, Y. Wang, M. Zhang, Y. Guo, J. Yuan, J. Ju, Y. Wang, F. Liao, and B. Yang, “Multicolor and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 1995–2001 (2013).
[Crossref]

J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(12), 2221–2227 (2014).
[Crossref]

Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, and Y. Liu, “Multicolor upconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 153–161 (2015).
[Crossref]

X. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

J. Mater. Sci. (1)

X. Huang, “Synthesis, multicolor tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles,” J. Mater. Sci. 51(7), 3490–3499 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Nanoscale (1)

H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, and S. Zeng, “Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging,” Nanoscale 6(5), 2855–2860 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (6)

Phys. Chem. Chem. Phys. (1)

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 XRD patterns of the (a) hexagonal NaYbF4 (JCPDS No. 27-1427), (b) NaYbF4:2%Er3+, (c) NaYbF4:2%Er3+/20%Y3+, (d) NaYbF4:2%Er3+/30%Y3+, (e) NaYbF4:2%Er3+/40%Y3+, (f) NaYbF4:2%Er3+/20%Gd3+, (g) NaYbF4:2%Er3+/30%Gd3+, and (h) NaYbF4:2%Er3+/40%Gd3+ nanoparticles.
Fig. 2
Fig. 2 TEM images of the as-prepared (a) NaYbF4:2%Er3+, (b) NaYbF4:2%Er3+/20%Y3+, (c) NaYbF4:2%Er3+/30%Y3+, (d) NaYbF4:2%Er3+/40%Y3+, (e) NaYbF4:2%Er3+/20%Gd3+, (f) NaYbF4:2%Er3+/30%Gd3+, and (g) NaYbF4:2%Er3+/40%Gd3+ nanoparticles.
Fig. 3
Fig. 3 Size distributions of the (a) NaYbF4:2%Er3+/20%Y3+, (b) NaYbF4:2%Er3+/30%Y3+, (c) NaYbF4:2%Er3+/40%Y3+, (d) NaYbF4:2%Er3+/20%Gd3+, (e) NaYbF4:2%Er3+/30%Gd3+, and (f) NaYbF4:2%Er3+/40%Gd3+ nanoparticles.
Fig. 4
Fig. 4 Upconversion emission spectra of the (a) NaYbF4:2%Er3+, (b) NaYbF4:2%Ho3+, and (c) NaYbF4:0.5%Tm3+ nanoparticles under 980 nm excitation.
Fig. 5
Fig. 5 (a) Upconversion emission spectra of the (a) NaYbF4:1%Tm3+/1%Ho3+, (b) NaYbF4:1%Tm3+/1%Er3+, and (c) NaYbF4:1%Er3+/1%Ho3+ nanoparticles under 980 nm excitation. (B) The CIE chromaticity diagram of (a) NaYbF4:2%Er3+, (b) NaYbF4:2%Ho3+, (c) NaYbF4:0.5%Tm3+, (d) NaYbF4:1%Er3+/1%Ho3+, (e) NaYbF4:1%Tm3+/1%Er3+, and (f) NaYbF4:1%Tm3+/1%Ho3+ nanoparticles upon excitation at 980 nm.
Fig. 6
Fig. 6 Upconversion emission spectra of (a) NaYbF4:2%Er3+/x%Y3+ and (b) NaYbF4:2%Er3+/x%Gd3+ (x = 20, 30, and 40) nanoparticles with different doping concentrations of Y3+ and Gd3+ ions. All the emission spectra were normalized to the red emission of Er3+ ions at 655 nm. The corresponding diagrams of R/G values (intensity ratio of red to green emission) versus doping concentrations of (c) Y3+ and (d) Gd3+ ions.
Fig. 7
Fig. 7 The CIE chromaticity diagram of (a) NaYbF4:2%Er3+, (b) NaYbF4:2%Er3+/20%Y3+, (c) NaYbF4:2%Er3+/40%Y3+, (d) NaYbF4:2%Er3+/20%Gd3+, and (e) NaYbF4:2%Er3+/40%Gd3+ nanoparticles upon excitation at 980 nm.
Fig. 8
Fig. 8 Schematic energy-level diagram of Yb3+ and Er3+, and the proposed mechanism of upconversion luminescence. CR denotes cross-relaxation.
Fig. 9
Fig. 9 Upconversion emission spectra of different Tm3+-doped nanoparticles under 980 nm excitation. (a) NaYbF4:x%Tm3+ (x = 0.5 and 2), (b) NaYbF4:2%Tm3+/x%Y3+ (x = 0 and 40), and (c) NaYbF4:2%Tm3+/x%Gd3+ (x = 0 and 20). All the emission spectra were normalized to the blue emission of Tm3+ ions at 475 nm.
Fig. 10
Fig. 10 Schematic energy-level diagram of Yb3+ and Tm3+, and the proposed mechanism of upconversion luminescence. CR denotes cross-relaxation, BET represents back-energy-transfer.

Tables (1)

Tables Icon

Table 1 The lattice constants, unit-cell volumes and the NCs diameters of the NaYbF4:2%Er3+ nanoparticles doped with different concentrations of Y3+ or Gd3+ ions

Metrics