Abstract

The Cr3+- and Ti3+-doped crystals of chrysoberyl (BeAl2O4) and beryllium hexaaluminate (BeAl6O10) are very attractive for generation of near-IR ultrashort laser pulses in a few-optical-cycle regime from mode-locked oscillators. This work presents a detailed study of dispersive properties of both crystals, which is necessary for optimal dispersion control in such lasers. Sellmeier equations for the chrysoberyl (Cr:BeAl2O4 – Alexandrite) and BeAl6O10 crystals were derived and second- and third-order dispersive properties (GVD and TOD, respectively) were analyzed. Position of the optical axes and conicity angle were also predicted for these biaxial crystals which is of practical importance for their applications as conerefringent elements in lasers and laser beam shapers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal

Pavel Loiko, Shirin Ghanbari, Vladimir Matrosov, Konstantin Yumashev, and Arkady Major
Opt. Mater. Express 8(10) 3000-3006 (2018)

Alexandrite microchip lasers

Martin Fibrich, Jan Šulc, and Helena Jelínková
Opt. Express 27(12) 16975-16982 (2019)

Femtosecond Kerr-lens mode-locked Alexandrite laser

Shirin Ghanbari, Reza Akbari, and Arkady Major
Opt. Express 24(13) 14836-14840 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  3. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24(6), 411–413 (1999).
    [Crossref] [PubMed]
  4. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24(9), 631–633 (1999).
    [Crossref] [PubMed]
  5. T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
    [Crossref]
  6. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
    [Crossref]
  7. J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  8. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  9. E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
    [Crossref]
  10. E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
    [Crossref]
  11. S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
    [Crossref]
  12. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  13. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  14. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in CLEO:2016, OSA Technical Digest Series (Optical Society of America, 2016), P. JTu5A.77.
  15. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” in CLEO:2014, OSA Technical Digest Series (Optical Society of America, 2014), P. JTu4A.126.
    [Crossref]
  16. J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
    [Crossref]
  17. J. Hellström, H. Henricsson, V. Pasiskevicius, U. Bünting, and D. Haussmann, “Polarization-tunable Yb:KGW laser based on internal conical refraction,” Opt. Lett. 32(19), 2783–2785 (2007).
    [Crossref] [PubMed]
  18. A. Abdolvand, K. G. Wilcox, T. K. Kalkandjiev, and E. U. Rafailov, “Conical refraction Nd:KGd(WO4)2 laser,” Opt. Express 18(3), 2753–2759 (2010).
    [Crossref] [PubMed]
  19. G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, “Conical Refraction: new observations and a dual cone model,” Opt. Express 21(9), 11125–11131 (2013).
    [Crossref] [PubMed]
  20. V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12(9), 095706 (2010).
    [Crossref]
  21. C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).
  22. A. J. F. Nye, Physical Properties of Crystals (Clarendon Press, 1957).
  23. X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
    [Crossref]
  24. H. E. J. Neugebauer, “Clausius-Mosotti equation for certain types of anisotropic crystals,” Can. J. Phys. 32(1), 1–8 (1954).
    [Crossref]
  25. J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
    [Crossref]

2014 (1)

2013 (2)

2010 (2)

2007 (1)

2003 (1)

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

2001 (1)

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1999 (2)

1997 (1)

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

1996 (1)

X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
[Crossref]

1994 (2)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
[Crossref]

1991 (1)

1990 (1)

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

1985 (1)

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

1979 (1)

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

1954 (1)

H. E. J. Neugebauer, “Clausius-Mosotti equation for certain types of anisotropic crystals,” Can. J. Phys. 32(1), 1–8 (1954).
[Crossref]

1953 (1)

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[Crossref]

Abdolvand, A.

Alimpiev, A. I.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Angelow, G.

Baali, I.

Beyatli, E.

Boulanger, B.

J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
[Crossref]

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Bünting, U.

Carnegie, D. J.

Chen, Y.

Cho, S. H.

Cline, C. F.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

Cormier, J.-F.

X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
[Crossref]

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Damzen, M. J.

Demirbas, U.

Donald, F. H.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Drexler, W.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Dutoit, M.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

Erbert, G.

Féve, J. P.

J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
[Crossref]

Fuji, T.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Fujimoto, J. G.

Gallmann, L.

Gately, B. M.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Harget, P. J.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

Harter, D. J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Haus, H. A.

Haussmann, D.

Heller, D. F.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Hellström, J.

Henricsson, H.

Ippen, E. P.

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Kahn, A. H.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[Crossref]

Kalkandjiev, T. K.

Kärtner, F. X.

Kean, P. N.

Keller, U.

Kirpichnikov, A. V.

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Krasinski, J. S.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Krausz, F.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Leitenstorfer, A.

Marnier, G.

J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
[Crossref]

Matrosov, V. N.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Matuschek, N.

Minassian, A.

Morgner, U.

Morier-Genoud, F.

Morris, R. C.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

Myers, J. F.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Neugebauer, H. E. J.

H. E. J. Neugebauer, “Clausius-Mosotti equation for certain types of anisotropic crystals,” Can. J. Phys. 32(1), 1–8 (1954).
[Crossref]

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Pasiskevicius, V.

Peet, V.

V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12(9), 095706 (2010).
[Crossref]

Pestryakov, E. V.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Pete, J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Petrov, V. V.

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Piché, M.

X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
[Crossref]

Rafailov, E. U.

Samelson, H.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Scheps, S. R.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Scheuer, V.

Semenov, V. I.

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Sennaroglu, A.

Shockley, W.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[Crossref]

Sibbett, W.

Sokolovskii, G. S.

Spence, D. E.

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Steinmeyer, G.

Stingl, A.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Sumpf, B.

Sutter, D. H.

Tempea, G.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Teppitaksak, A.

Tessman, J. R.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[Crossref]

Thomas, G. M.

Trunov, V. I.

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Tschudi, T.

Unterhuber, A.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Walling, J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Walling, J. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Wilcox, K. G.

Yakovlev, V. S.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Zhu, X.

X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
[Crossref]

Zubrinov, I. I.

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

Appl. Phys. B (1)

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[Crossref]

Appl. Phys. Lett. (1)

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Can. J. Phys. (1)

H. E. J. Neugebauer, “Clausius-Mosotti equation for certain types of anisotropic crystals,” Can. J. Phys. 32(1), 1–8 (1954).
[Crossref]

IEEE J. Quantum Electron. (3)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

J. Appl. Phys. (1)

E. V. Pestryakov, V. V. Petrov, I. I. Zubrinov, V. I. Semenov, V. I. Trunov, A. V. Kirpichnikov, and A. I. Alimpiev, “Physical properties of BeAl6O10 single crystals,” J. Appl. Phys. 82(8), 3661–3666 (1997).
[Crossref]

J. Mater. Sci. (1)

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14, 941–944 (1979).

J. Mod. Opt. (1)

X. Zhu, J.-F. Cormier, and M. Piché, “Study of dispersion compensation in femtosecond lasers,” J. Mod. Opt. 43(8), 1701–1721 (1996).
[Crossref]

J. Opt. (1)

V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12(9), 095706 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. P. Féve, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105(3-4), 243–252 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. (1)

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[Crossref]

Quantum Electron. (1)

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Other (3)

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in CLEO:2016, OSA Technical Digest Series (Optical Society of America, 2016), P. JTu5A.77.

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” in CLEO:2014, OSA Technical Digest Series (Optical Society of America, 2014), P. JTu4A.126.
[Crossref]

A. J. F. Nye, Physical Properties of Crystals (Clarendon Press, 1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Dispersion of the principal refractive indices ni (i = p, m, g) for Alexandrite (a) and BeAl6O10 (b) crystals. Symbols: experimental data adopted from [8,10], curves: Sellmeier fits in accordance with Eq. (1), insets: relative size of the unit-cell and orientation of optical indicatrix axes (Np, Nm and Ng) with respect to the crystallographic ones.
Fig. 2
Fig. 2 (a) Positive biaxial Alexandrite and BeAl6O10 crystals: (a) dispersion of the optical axis angle Vg, as calculated with Eq. (2); inset: orientation of the optical axes with respect to the optical indicatrix and crystal-physical frames; (b) dispersion of the full angle of the cone of CR, 2ACR, as calculated with Eq. (3), inset: scheme explaining definition of this angle.
Fig. 3
Fig. 3 (a,b) Group velocity dispersion (GVD) and (c,d) third-order dispersion (TOD) versus light wavelength for Alexandrite (BeAl2O4) (a,c) and BeAl6O10 (b,d) crystals, as calculated with Eq. (4).
Fig. 4
Fig. 4 Dispersion of molecular polarizability αm for Alexandrite (a) and BeAl6O10 (b) crystals, as calculated with Eq. (5).

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients in Eq. (1) for BeAl2O4 and BeAl6O10 Crystals

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n i 2 = A i + B i 1 C i / λ 2 + D i λ 2 .
sin 2 V g = 1 / n m 2 1 / n p 2 1 / n g 2 1 / n p 2 .
tan 2 2 A C R = n m 2 n p 2 n p 2 n g 2 n m 2 n g 2 .
G V D i = λ 3 2 π c 2 d 2 n i d λ 2 ,
T O D i = ( λ 2 π c ) 2 1 c [ 3 λ 2 d 2 n i d λ 2 + λ 3 d 3 n i d λ 3 ] .
ε i 1 ε i + 2 M ρ = 4 π N A α m i 3 .

Metrics