Abstract

Self-crystallized KTb2F7 oxy-fluoride glass ceramics (GC) were successfully manufactured via the traditional melt-quenching method. KTb2F7 nanocrystals were already formed after melt-quenching, which is beneficial to the realization of controllable glass crystallization to some degree for affording desirable nano-crystal size and activator partition. Their microstructural and optical properties were systemically investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), absorption spectra, photoluminescence (PL), luminescence lifetime measurements and X-ray excited luminescence (XEL). Both PL and XEL of GC samples are highly enhanced because more nanocrystals formed and grew up after heat-treatment. Our investigation suggests that transparent KTb2F7 glass ceramics may present potential application in X-ray scintillator for X-ray imaging. And our strategy that takes active ions as host may contribute to designing other oxy-fluoride GC by using active ions as host.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging

WeiPing Chen, JiangKun Cao, FangFang Hu, RongFei Wei, LiPing Chen, XinYuan Sun, and Hai Guo
Opt. Mater. Express 8(1) 41-49 (2018)

Eu3+ doped transparent germanate glass ceramic scintillators containing LaF3 nanocrystals for X-ray detection

JingTao Zhao, LiHui Huang, ShiLong Zhao, and ShiQing Xu
Opt. Mater. Express 9(2) 576-584 (2019)

2.7 μm emission in Er3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals

Y. Liu, X. Y. Liu, W. C. Wang, W. J. Zhang, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2759-2768 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
    [Crossref]
  2. X. Y. Sun, Z. P. Ye, Y. T. Wu, Z. H. Xiao, P. Gao, R. H. Mao, Z. J. Zhang, and J. T. Zhao, “Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass,” Opt. Mater. Express 5(6), 1381–1388 (2015).
    [Crossref]
  3. I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Adv. Mater. 18(1), 77–79 (2006).
    [Crossref]
  4. B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
    [Crossref]
  5. G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
    [Crossref]
  6. U. W. Arndt, “X-ray television area detectors,” Nucl. Instrum. Methods Phys. Res. 201(1), 13–20 (1982).
    [Crossref]
  7. X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
    [Crossref]
  8. L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
    [Crossref]
  9. S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
    [Crossref]
  10. C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
    [Crossref] [PubMed]
  11. J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
    [Crossref]
  12. C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, and C. Rüssel, “Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics,” Opt. Lett. 40(22), 5263–5266 (2015).
    [Crossref] [PubMed]
  13. G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
    [Crossref]
  14. P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
    [Crossref]
  15. G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
    [Crossref] [PubMed]
  16. X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
    [Crossref]
  17. M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
    [Crossref]
  18. J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
    [Crossref]
  19. J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
    [Crossref]
  20. X. Sun and S. Huang, “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics,” Nucl. Instrum. Methods Phys. Res. A 621(1-3), 322–325 (2010).
    [Crossref]
  21. D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
    [Crossref] [PubMed]
  22. S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Site-selective excitation and emission of Eu3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” Opt. Mater. Express 3(6), 868–874 (2013).
    [Crossref]
  23. Y. L. Wei, X. M. Li, and H. Guo, “Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics,” Opt. Mater. Express 4(7), 1367–1372 (2014).
    [Crossref]
  24. P. Lecoq, A. Anenkow, A. Gektin, M. Korzhik, and C. Pedrini, Inorganic Scintillators for Detector Systems (Springer Verlag Berlin Heidelberg, 2006), Chap. 1.

2016 (2)

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

2015 (7)

C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, and C. Rüssel, “Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics,” Opt. Lett. 40(22), 5263–5266 (2015).
[Crossref] [PubMed]

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

X. Y. Sun, Z. P. Ye, Y. T. Wu, Z. H. Xiao, P. Gao, R. H. Mao, Z. J. Zhang, and J. T. Zhao, “Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass,” Opt. Mater. Express 5(6), 1381–1388 (2015).
[Crossref]

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (6)

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Site-selective excitation and emission of Eu3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” Opt. Mater. Express 3(6), 868–874 (2013).
[Crossref]

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
[Crossref]

2010 (1)

X. Sun and S. Huang, “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics,” Nucl. Instrum. Methods Phys. Res. A 621(1-3), 322–325 (2010).
[Crossref]

2009 (1)

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

2008 (1)

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

2007 (1)

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

2006 (1)

I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Adv. Mater. 18(1), 77–79 (2006).
[Crossref]

2001 (1)

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

1982 (1)

U. W. Arndt, “X-ray television area detectors,” Nucl. Instrum. Methods Phys. Res. 201(1), 13–20 (1982).
[Crossref]

Arndt, U. W.

U. W. Arndt, “X-ray television area detectors,” Nucl. Instrum. Methods Phys. Res. 201(1), 13–20 (1982).
[Crossref]

Babin, V.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Baccaro, S.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Beaudin, A.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Bittar, A.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Bliss, M.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Bocker, C.

Brooke Barta, M.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Campbell, I. H.

I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Adv. Mater. 18(1), 77–79 (2006).
[Crossref]

Cao, J.

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Chai, G.

Chen, D.

Chen, L.

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

Chen, Y.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Chen, Y. J.

Crone, B. K.

I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Adv. Mater. 18(1), 77–79 (2006).
[Crossref]

Deng, D.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Dong, G.

Dong, Z. L.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Dotzler, C.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Dunford, C.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Fabeni, P.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Fan, S.

Fu, J.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Gao, G.

Gao, P.

X. Y. Sun, Z. P. Ye, Y. T. Wu, Z. H. Xiao, P. Gao, R. H. Mao, Z. J. Zhang, and J. T. Zhao, “Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass,” Opt. Mater. Express 5(6), 1381–1388 (2015).
[Crossref]

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

Ge, Q.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Gong, X. H.

Gu, F.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Guo, H.

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Y. L. Wei, X. M. Li, and H. Guo, “Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics,” Opt. Mater. Express 4(7), 1367–1372 (2014).
[Crossref]

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

Hua, Y.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Huang, J. H.

Huang, L.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Huang, S.

X. Sun and S. Huang, “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics,” Nucl. Instrum. Methods Phys. Res. A 621(1-3), 322–325 (2010).
[Crossref]

Huang, Y. D.

Jia, G.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Jia, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Kahn, B.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Kang, Z.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Kobayashi, M.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Kong, L. B.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Krasnikov, A.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Li, L.

Li, P.

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

Li, S.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Li, X.

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Li, X. M.

Li, Y.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Lin, C.

Lin, Y. F.

Liu, C.

Liu, X.

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

Luo, D. W.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Luo, Z. D.

Ma, Z.

Mao, R. H.

Mares, J. A.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Martini, M.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Mihokova, E.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Milbrath, B. D.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Nadler, J. H.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Nikl, M.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Nitsch, K.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Parker, J. M.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Pazzi, G. P.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Peng, M.

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

Peurrung, A. J.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Qiu, J.

Que, W. X.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Rosson, R.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Rüssel, C.

Solovieva, N.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Sugimoto, S.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Sun, X.

X. Sun and S. Huang, “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics,” Nucl. Instrum. Methods Phys. Res. A 621(1-3), 322–325 (2010).
[Crossref]

Sun, X. Y.

X. Y. Sun, Z. P. Ye, Y. T. Wu, Z. H. Xiao, P. Gao, R. H. Mao, Z. J. Zhang, and J. T. Zhao, “Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass,” Opt. Mater. Express 5(6), 1381–1388 (2015).
[Crossref]

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

Tan, G. E. B.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Tang, D. Y.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Varoy, C.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Vedda, A.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Viana, B.

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

Wagner, B. K.

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Wan, Z.

Wang, H.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Wang, S. F.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Wang, X.

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Wang, Z.

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

Weber, W. J.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Wei, R.

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

Wei, Y.

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

Wei, Y. L.

Williams, G. V. M.

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Wondraczek, L.

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
[Crossref]

Wu, G.

Wu, H. S.

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

Wu, Y. T.

Xiao, A.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Xiao, Z. H.

Xie, P.

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

Xu, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Yang, J.

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

Yang, Q. M.

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

Ye, Z. P.

Zazubovich, S.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

Zhang, J.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Zhang, S. N.

Zhang, T. S.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Zhang, X.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z. J.

Zhao, J. T.

Zhao, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

Zhao, Y.

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

Zhao, Z.

Zhou, Y.

Zhou, Z.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Zhu, L.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Zhuang, Y.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Zuo, C.

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Adv. Mater. 18(1), 77–79 (2006).
[Crossref]

J. Am. Ceram. Soc. (2)

X. Liu, Y. Wei, R. Wei, J. Yang, and H. Guo, “Elaboration, Structure, and Luminescence of Eu3+-Doped BaLuF5-Based Transparent Glass-Ceramics,” J. Am. Ceram. Soc. 96(3), 798–800 (2013).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+ in nanocrystallized glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

J. Lumin. (2)

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

X. Y. Sun, Q. M. Yang, P. Gao, H. S. Wu, and P. Xie, “Luminescence, energy transfer properties of Tb3+/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses,” J. Lumin. 165, 40–45 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Li, M. Peng, L. Wondraczek, Y. Zhao, and B. Viana, “Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(14), 3406–3415 (2015).
[Crossref]

J. Mater. Res. (1)

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

U. W. Arndt, “X-ray television area detectors,” Nucl. Instrum. Methods Phys. Res. 201(1), 13–20 (1982).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (2)

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods Phys. Res. A 788, 111–115 (2015).
[Crossref]

X. Sun and S. Huang, “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics,” Nucl. Instrum. Methods Phys. Res. A 621(1-3), 322–325 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

M. Brooke Barta, J. H. Nadler, Z. Kang, B. K. Wagner, R. Rosson, and B. Kahn, “Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators,” Opt. Mater. 36(2), 287–293 (2013).
[Crossref]

Opt. Mater. Express (4)

Prog. Solid State Chem. (1)

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem. 41(1-2), 20–54 (2013).
[Crossref]

Radiat. Meas. (2)

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33(5), 593–596 (2001).
[Crossref]

G. V. M. Williams, A. Bittar, C. Dotzler, A. Beaudin, C. Varoy, and C. Dunford, “Glass-ceramics and epoxy-composites for radiation imaging,” Radiat. Meas. 42(4-5), 899–902 (2007).
[Crossref]

Sens. Actuators B Chem. (1)

J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, and H. Guo, “Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics,” Sens. Actuators B Chem. 224, 507–513 (2016).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, Y. Zhuang, X. Li, and Q. Ge, “Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 147, 324–327 (2015).
[Crossref] [PubMed]

Other (1)

P. Lecoq, A. Anenkow, A. Gektin, M. Korzhik, and C. Pedrini, Inorganic Scintillators for Detector Systems (Springer Verlag Berlin Heidelberg, 2006), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) XRD patterns of PG, GC660 and GC680, and the reference data of JCPDS card No. 32-0849 for KTb2F7; (b) Transmittance spectra; (c) TEM image of PG, the inset is corresponding SAED patterns; (d) HRTEM image of PG. (e) TEM image of GC680, the inset is corresponding SAED patterns; (f) HRTEM image of GC680.
Fig. 2
Fig. 2 (a) Excitation spectra (λem = 543 nm) and (b) emission spectra (λex = 376 nm) of Tb3+-doped PG, GC660 and GC680 samples. (c) Decay curves for 5D47F5 transition (543 nm) of Tb3+ in PG, GC660 and GC680 (λex = 376 nm). (d) XEL spectra of KTb2F7 PG,GC660 and GC680 samples under the excitation of X-ray (50 kV, 3 mA), the inset is corresponding enhanced factor of PL spectra and XEL spectra of GC660 and GC680 samples compared with PG sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D = k λ / β cos θ
τ = I ( t ) t d t / I ( t ) d t

Metrics