Abstract

This work investigates an electrically and optically tunable Fresnel lens in a liquid crystal (LC) cell with an erasable and rewritable photoconductive layer. By using a Sagnac interferometer, a Fresnel-like pattern can be induced on the photoconductive polymer layer which results in conductive and nonconductive structures in bright and dark zones. This effect causes the mismatch of the LC refractive index between adjacent zones with external voltage, generating a LC Fresnel lens. The focal length of the proposed Fresnel lens can be easily tuned by varying the Fresnel pattern size, and the focusing efficiency can be optically and electrically controlled.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer

Hossein Jashnsaz, Ezeddin Mohajerani, Hossein Nemati, Seyed Hossein Razavi, and Isa Ahmad Alidokht
Appl. Opt. 50(17) 2701-2707 (2011)

Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals

Ko-Ting Cheng, Cheng-Kai Liu, Chi-Lun Ting, and Andy Ying-Guey Fuh
Opt. Express 15(21) 14078-14085 (2007)

Electrically tunable prism grating based on a liquid crystal film with a photoconductive layer

Shuan-Yu Huang, He-Yi Zheng, Kai-Yu Yu, Bing-Yau Huang, Hong-Ren Lin, Chia-Rong Lee, and Chie-Tong Kuo
Opt. Mater. Express 2(12) 1791-1796 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
    [Crossref] [PubMed]
  2. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [Crossref] [PubMed]
  3. C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
    [Crossref]
  4. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  5. Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
  6. K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
    [Crossref]
  7. S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
    [Crossref] [PubMed]
  8. C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
    [Crossref]
  9. S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [Crossref]
  10. C.-T. Kuo, C.-Y. Li, S.-H. Lin, and H.-C. Yeh, “Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals,” Opt. Express 23(20), 26041–26048 (2015).
    [Crossref] [PubMed]
  11. C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
    [Crossref]
  12. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]
  13. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  14. T.-H. Lin, Y. Huang, A. Y. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
    [Crossref] [PubMed]
  15. X. Q. Wang, F. Fan, T. Du, A. M. W. Tam, Y. Ma, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer,” Appl. Opt. 53(10), 2026–2029 (2014).
    [Crossref] [PubMed]
  16. Y.-C. Kuo and H.-C. Yeh, “Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
    [Crossref]
  17. H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
    [Crossref] [PubMed]
  18. J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
    [Crossref]
  19. C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
    [Crossref] [PubMed]
  20. C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
    [Crossref]
  21. Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
    [Crossref]
  22. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990).
    [Crossref] [PubMed]
  23. K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, “Binary phase Fresnel lenses for generation of two-dimensional beam arrays,” Appl. Opt. 30(11), 1347–1354 (1991).
    [Crossref] [PubMed]
  24. F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor–liquid-crystal structure,” J. Opt. Technol. 67(8), 712–716 (2000).
    [Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (3)

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Y.-C. Kuo and H.-C. Yeh, “Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

2011 (2)

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref] [PubMed]

2010 (3)

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref] [PubMed]

C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

2009 (1)

2007 (3)

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

2003 (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

2000 (1)

1996 (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

1992 (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[Crossref]

1991 (1)

1990 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Baek, J.-H.

Chaika, A. N.

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

Chen, T.-A.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Chigrinov, V. G.

Du, T.

Fan, F.

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Fuh, A. Y.

Gilchrist, H.

Gwag, J. S.

Habiby, S. F.

Heo, J. U.

Horng, J.-S.

Hsu, C. J.

Huang, C.-Y.

Huang, H.-Y.

C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Huang, J.-F.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

Huang, S.-C.

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

Huang, S.-Y.

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref] [PubMed]

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

Huang, Y.

Huang, Y.-P.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

Hubbard, W. M.

Hwang, S.-J.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref] [PubMed]

Jahns, J.

Jau, H.-C.

Jeng, S.-C.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref] [PubMed]

Jiang, I.-M.

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

Kim, J.-H.

Kim, Y.

Kuo, C.-T.

C.-T. Kuo, C.-Y. Li, S.-H. Lin, and H.-C. Yeh, “Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals,” Opt. Express 23(20), 26041–26048 (2015).
[Crossref] [PubMed]

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

Kuo, Y.-C.

Y.-C. Kuo and H.-C. Yeh, “Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref] [PubMed]

Kwok, H. S.

Lee, C.-R.

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[Crossref] [PubMed]

C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

Lee, Y.-J.

Li, C.-Y.

Lin, C.-H.

C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Lin, J.-D.

Lin, K.-R.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref] [PubMed]

Lin, L.-C.

Lin, S.-H.

Lin, T.-H.

Lin, Z.-Y.

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

Lo, K.-C.

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[Crossref] [PubMed]

C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

Lo, K.-Y.

Loktev, M. Yu.

Ma, J.-M.

Ma, Y.

Marrakchi, A.

Mo, T.-S.

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref] [PubMed]

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[Crossref] [PubMed]

C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

Moon, Y.-K.

Morichev, I. E.

Nahory, R. E.

Naumov, A. F.

Peng, W.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

Pletneva, N. I.

Qian, J.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

Qian, S.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

Rastani, K.

Ren, H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Shen, T.-C.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

Sheu, C. R.

Srivastava, A. K.

Tam, A. M. W.

Tsai, M.-S.

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

Vladimirov, F. L.

Walker, S. J.

Wang, J.-D.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

Wang, J.-Y.

C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Wang, X. Q.

Wang, Y.

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[Crossref]

Wu, S. T.

Wu, S.-T.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Xu, C.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

Yeh, H.-C.

Yu, C.-J.

Appl. Opt. (3)

Appl. Phys. B (2)

C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[Crossref]

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Express (1)

Y.-C. Kuo and H.-C. Yeh, “Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[Crossref]

Appl. Phys. Lett. (2)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[Crossref]

Chem. Phys. Lett. (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5–6), 563–568 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

J. 3D Res. (1)

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).

J. Appl. Phys. (1)

C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquid-crystalline optical channels,” J. Appl. Phys. 97(10), 103113 (2005).
[Crossref]

J. Opt. Technol. (1)

Jpn. J. Appl. Phys. (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

Nature (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[Crossref]

Opt. Express (7)

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[Crossref] [PubMed]

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

C.-T. Kuo, C.-Y. Li, S.-H. Lin, and H.-C. Yeh, “Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals,” Opt. Express 23(20), 26041–26048 (2015).
[Crossref] [PubMed]

T.-H. Lin, Y. Huang, A. Y. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[Crossref] [PubMed]

Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
[Crossref] [PubMed]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Chemical structures of (a) PVK and (b) C60. (c)The absorption spectra of the PVK (blue line) and C60 doped PVK (red line) layers.
Fig. 2
Fig. 2 Illustrates the experimental setup for generating the Fresnel zone pattern in a homogeneous aligned LC cell using the Sagnac interferometer and the analysis of the focusing characteristics. The symbols are denoted as follows: P, polarizer; λ/4, quarter-wave plate; A, analyzer; DM, dichroic mirror; BS, beam splitter; L, lens; M, mirror; F, long-wave pass filter.
Fig. 3
Fig. 3 (a) The Fresnel pattern generated by the Sagnac interferometer. (b) The operating principles of the LC Fresnel lens with a photoconductive layer at an applied voltage.
Fig. 4
Fig. 4 shows the focused images of the LC Fresnel lens at an applied voltage V = 1.4 V: Without irradiation intensity I = 0 (a); with the irradiation intensity I = 9.85 mW/cm2 and polarizing angles of the probe beam at (b) 0°, (c) 45°, (d) 90° respectively.
Fig. 5
Fig. 5 The voltage-dependent diffraction efficiency of the LC Fresnel lens generated by pumping the Fresnel-pattern blue beam with various intensities.
Fig. 6
Fig. 6 Diffraction efficiency of the LC Fresnel lens as a function of the intensity of the Fresnel-pattern blue beam with various applied voltage.
Fig. 7
Fig. 7 The measured focusing response times of the rewritable Fresnel LC lens with the blue beam switched on/off.
Fig. 8
Fig. 8 The measured focal length as a function of the square central ring radius of the pumped Fresnel pattern.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ= 2π λ ( n even n odd )d,
η= sin( Γ/2 ) π/2 .
V LC = V 1+( d PVK/C 60 σ LC ) / ( d LC σ PVK/C 60 ) ,
f= r 1 2 λ ,

Metrics