Abstract

In this work we present the refractive index sensing performance comparison between resonant (R-NPs) and silicon dioxide (SiO2-NPs) high-aspect ratio nano-pillars arrays. Both arrays have been fabricated by laser interference lithography and reactive ion etching. The R-NPs are made by a multilayer of silicon oxide and silicon nitride distributed to act as a vertical resonant cavity with two Bragg reflectors. Several chips containing eight periodic arrays of R-NPs and SiO2-NPs were implemented following the presented fabrication process, having a height in the order of 2.5 μm, a diameter in the order of 200 nm, different pitches and aspect ratio up to 9.8. Finally, the optical responses of these arrays were measured by infiltration of fluids with different refractive indexes. The main conclusion is that sensitivity obtained for the R-NPs is more than two times higher in comparison with the SiO2-NPs sensitivity (3724 cm−1/RIU and 1652 cm−1/RIU, respectively).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of Si3N4/SiO2 tiered resonant nanopillars with nickel caps arrays: application for optochemical sensing

V. Canalejas-Tejero, A. L. Hernández, R. Casquel, S. A. Quintero, M. F. Laguna, and M. Holgado
Opt. Mater. Express 8(4) 1082-1090 (2018)

Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays

D. Visser, B. Dev Choudhury, I. Krasovska, and S. Anand
Opt. Express 25(11) 12171-12181 (2017)

Silicon nanopillar arrays with SiO2 overlayer for biosensing application

B. Dev Choudhury, R. Casquel, M.J. Bañuls, F.J. Sanza, M.F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C.A. Barrios, and S. Anand
Opt. Mater. Express 4(7) 1345-1354 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
    [Crossref] [PubMed]
  2. V. Kugel and H. F. Ji, “Nanopillars for Sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
    [Crossref] [PubMed]
  3. B. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express 4(7), 1345–1354 (2014).
    [Crossref]
  4. D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
    [Crossref]
  5. V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
    [Crossref]
  6. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [Crossref] [PubMed]
  7. A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
    [Crossref] [PubMed]
  8. T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
    [Crossref]
  9. V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
    [Crossref]
  10. Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
    [Crossref]
  11. C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
    [Crossref]
  12. L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
    [Crossref]
  13. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
    [Crossref] [PubMed]
  14. H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
    [Crossref]
  15. H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Phys. E 11(2-3), 104–109 (2001).
    [Crossref]
  16. S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
    [Crossref]
  17. I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
    [Crossref] [PubMed]
  18. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
    [Crossref]
  19. W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
    [Crossref]
  20. P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, and H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52(14), 3203–3215 (2013).
    [Crossref] [PubMed]
  21. R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
    [Crossref]
  22. J. Kiihamäki, “Deceleration of silicon etch rate at high aspect ratios,” J. Vac. Sci. Technol. A 18(4), 1385–1389 (2000).
    [Crossref]
  23. I. Cornago, H. J. Choi, J. G. Kim, and G. Barbastathis, “Simple and Low-Cost Fabrication Process of High Aspect Ratio Periodic Nanocone Structures,” presented at the 38th International Conference of Micro and Nano Engineering, Toulouse, France, 16–20 Sept. 2012.

2015 (2)

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, and H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52(14), 3203–3215 (2013).
[Crossref] [PubMed]

2010 (1)

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

2008 (1)

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

2007 (3)

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

2006 (2)

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

2005 (1)

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

2004 (1)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

2001 (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Phys. E 11(2-3), 104–109 (2001).
[Crossref]

2000 (2)

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

J. Kiihamäki, “Deceleration of silicon etch rate at high aspect ratios,” J. Vac. Sci. Technol. A 18(4), 1385–1389 (2000).
[Crossref]

1996 (1)

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

1992 (1)

R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
[Crossref]

1990 (1)

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Aatz, B.

Alcubilla, R.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Anand, S.

Aromaa, M.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Astratov, V. N.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Bai, S.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Bañuls, M. J.

B. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Barrios, C. A.

B. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Bravo, J.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Carter, J. M.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

Casquel, R.

Chang, Y. F.

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

Cheung, C. L.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Chou, Q. R.

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

Chou, S. Y.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Choudhury, B.

Cornago, I.

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Daraei, A.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Domínguez, S.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Ezquer, M.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Fernández, F.

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Fox, A. M.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Franssila, S.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Fry, P. W.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

García, O.

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Gottscho, R. A.

R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
[Crossref]

Grigoras, K.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Guimaraes, P. S.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Hernández, A. L.

Ho, Y.-L. D.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Holgado, M.

Hopkinson, M.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Ji, H. F.

V. Kugel and H. F. Ji, “Nanopillars for Sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

Jones, B. D.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Jurgensen, C. W.

R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kern, W.

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Keskinen, H.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Kiihamäki, J.

J. Kiihamäki, “Deceleration of silicon etch rate at high aspect ratios,” J. Vac. Sci. Technol. A 18(4), 1385–1389 (2000).
[Crossref]

Kotiaho, T.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Kugel, V.

V. Kugel and H. F. Ji, “Nanopillars for Sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Laguna, M. F.

Lagunas, A. R.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Lam, S.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Lavín, A.

Lee, C. H.

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

Liebetraut, P.

Lin, J. Y.

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

López-Romero, D.

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Luosujärvi, L.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Maigler, M.

Mäkelä, J. M.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Malinin, A.

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

Maquieira, A.

B. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Marsal, L. F.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Merzsch, S.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Morton, K. J.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Nguyen, P. H. C.

Nieberg, G.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Nikolic, R. J.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Novikov, S.

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

Ortega, F. J.

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Ovchinnikov, V.

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

Pallares, J.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Peiner, E.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Pérez-Conde, J.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Puchades, R.

B. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Rarity, J. G.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reinhardt, C. E.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Reith, P.

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Rodriguez, R.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

Rodríguez, A.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Rodríguez, M. J.

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Sainiemi, L.

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

Salthammer, T.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Santamaría, B.

Sanvitto, D.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Sanza, F. J.

Savas, T. A.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

Schattenburg, M. L.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Servera, F.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Skolnick, M. S.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Smith, H. I.

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Phys. E 11(2-3), 104–109 (2001).
[Crossref]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

Stranz, A.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Tahraoui, A.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Timpson, J. A.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Trifonov, T.

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Tuovinen, C.

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

Uhde, E.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Vinck, H.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

Vitkavage, D. J.

R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
[Crossref]

Waag, A.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Waibel, P.

Wang, T. F.

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

Wasisto, H. S.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Whittaker, D. M.

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Yang, S.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Zappe, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. M. Whittaker, P. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007).
[Crossref]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91(7), 071115 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[Crossref]

Biosens. Bioelectron. (1)

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

J. Nanosci. Nanotechnol. (1)

V. Kugel and H. F. Ji, “Nanopillars for Sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

J. Kiihamäki, “Deceleration of silicon etch rate at high aspect ratios,” J. Vac. Sci. Technol. A 18(4), 1385–1389 (2000).
[Crossref]

J. Vac. Sci. Technol. B (2)

R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol. B 10(5), 2133–2147 (1992).
[Crossref]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[Crossref]

Mater. Sci. Eng. B (1)

V. Ovchinnikov, A. Malinin, S. Novikov, and C. Tuovinen, “Fabrication of silicon nanopillars using self-organized gold–chromium mask,” Mater. Sci. Eng. B 69–70, 459–463 (2000).
[Crossref]

Nanotechnology (4)

C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology 17(5), 1339–1343 (2006).
[Crossref]

L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujärvi, K. Grigoras, T. Kotiaho, J. M. Mäkelä, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology 18(50), 505303 (2007).
[Crossref]

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

I. Cornago, S. Domínguez, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, R. Rodriguez, and J. Bravo, “Periodic nanostructures on Unpolished substrates and their integration in solar cells,” Nanotechnology 26(9), 095301 (2015).
[Crossref] [PubMed]

Nature (1)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phot. Nano. Fund. Appl. (1)

S. Domínguez, I. Cornago, O. García, M. Ezquer, M. J. Rodríguez, A. R. Lagunas, J. Pérez-Conde, and J. Bravo, “Design, optimization and fabrication of 2D photonic crystals for solar cells,” Phot. Nano. Fund. Appl. 11(1), 29–36 (2013).
[Crossref]

Phys. E (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Phys. E 11(2-3), 104–109 (2001).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

T. Trifonov, A. Rodríguez, F. Servera, L. F. Marsal, J. Pallares, and R. Alcubilla, “High‐aspect‐ratio silicon dioxide pillars,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1634–1638 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem. 189, 146–156 (2013).
[Crossref]

Other (1)

I. Cornago, H. J. Choi, J. G. Kim, and G. Barbastathis, “Simple and Low-Cost Fabrication Process of High Aspect Ratio Periodic Nanocone Structures,” presented at the 38th International Conference of Micro and Nano Engineering, Toulouse, France, 16–20 Sept. 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the different steps of the fabrication process of the nanopillars: a) pattern of photoresist holes created by LIL; b) pattern of ARC and SiO2 holes transferred by means of CF4 and O2 RIEs; c) Cr pillars formed through a lift-off process; d) SiO2–NPs or R-NPs after a CHF3:O2 RIE and a Cr wet etching; e) schematic for comparison of both SiO2–NPs (left) and R-NPs (right).
Fig. 2
Fig. 2 a) Examples of the undesired effects of the RIE processes: central overetch (left), tapering (center) and roughness (right), scale bars represent 200 nm; b) graph that shows the score obtained by six different processes performed during the optimization of the final etching, being the process F the one with best results.
Fig. 3
Fig. 3 SEM pictures of two of the SiO2-NP chips: a) pitch of 600 nm and height of 2.9 μm; b) pitch of 400 nm and AR of 9.8. Scale bars represent 1 μm (a) and 200 nm (b).
Fig. 4
Fig. 4 a) Summary of the fabricated chips with R-NPs, all the scale bars represent 200 nm; b) picture of one of these chips where the eight arrays of R-NPs can be seen.
Fig. 5
Fig. 5 Resonant modes of NPs immersed in ethanol: a) SiO2-NPs with 300 nm pitch; b) R-NPs with 300 nm pitch.
Fig. 6
Fig. 6 Reflectivity of R-NPs immersed in ethanol and water; a) pitch of 400 nm; b) pitch of 600 nm.
Fig. 7
Fig. 7 Resonance wavenumber position as a function of refractive index units (RIU). The blue squares and pink triangles correspond to R-NPs and SiO2-NPs response respectively.

Metrics