Abstract

We present a study on a antimony telluride (Sb2Te3)-deposited side-polished fiber device as a saturable absorber for Yb-doped mode-locked fiber lasers. Thin layers of Sb2Te3 with variable length were deposited by a pulsed magnetron sputtering technique. We demonstrate measured characteristics of the device and show that it can be treated as a hybrid component - tunable polarizer with saturable absorption properties. The polarizing extinction ratio varies from 1.5 dB up to 17.1 dB with increasing length of the deposition. The fiber components were employed in all-normal Yb-doped fiber cavities. All devices enabled for mode-locked operation by means of hybrid mode-locking or nonlinear polarization evolution mechanism. In particular, the laser with 2 mm long Sb2Te3 absorber emitted 5.9 ps pulses with 4 mW of average output power.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber

Jakub Bogusławski, Grzegorz Soboń, Rafał Zybała, Krzysztof Mars, Andrzej Mikuła, Krzysztof M. Abramski, and Jarosław Sotor
Opt. Express 23(22) 29014-29023 (2015)

Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber

Jaroslaw Sotor, Grzegorz Sobon, Wojciech Macherzynski, Piotr Paletko, Kacper Grodecki, and Krzysztof M. Abramski
Opt. Mater. Express 4(1) 1-6 (2014)

Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi2Te3 saturable absorber

Qin Wei, Kangdi Niu, Xile Han, Huanian Zhang, Chao Zhang, Cheng Yang, and Baoyuan Man
Opt. Mater. Express 9(8) 3535-3545 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  3. M. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
    [Crossref]
  4. B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
    [Crossref]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  6. L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
    [Crossref]
  7. I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
    [Crossref]
  8. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  9. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  10. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
    [Crossref]
  11. U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  12. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  13. J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref] [PubMed]
  14. H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  15. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
    [Crossref] [PubMed]
  16. Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃,” Opt. Express 22(20), 24055–24061 (2014).
    [Crossref] [PubMed]
  17. G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photon. Res. 3(2), A56 (2015).
    [Crossref]
  18. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref] [PubMed]
  19. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
    [Crossref] [PubMed]
  20. H. Jeong, S. Y. Choi, F. Rotermund, Y. H. Cha, D. Y. Jeong, and D. I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
    [Crossref] [PubMed]
  21. J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
    [Crossref]
  22. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms,” Opt. Express 16(11), 8181–8189 (2008).
    [Crossref] [PubMed]
  23. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
    [Crossref] [PubMed]
  24. W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
    [Crossref] [PubMed]
  25. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
    [Crossref]
  26. R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449, 393–396 (2012).
    [Crossref]
  27. K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
    [Crossref]
  28. W. Richter and C. Becker, “A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1),” Phys. Status Solidi 84(2), 619–628 (1977).
    [Crossref]
  29. K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
    [Crossref]
  30. K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
    [Crossref] [PubMed]
  31. T. Anderson and H. Krause, “Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. B 30(5), 1307–1310 (1974).
    [Crossref]
  32. M. Kowalczyk, J. Sotor, and K. Abramski, “59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode,” Laser Phys. Lett. 13(3), 035801 (2016).
    [Crossref]
  33. A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
    [Crossref]
  34. K. Sohn and J. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun. 203(3-6), 271–276 (2002).
    [Crossref]

2016 (2)

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

M. Kowalczyk, J. Sotor, and K. Abramski, “59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode,” Laser Phys. Lett. 13(3), 035801 (2016).
[Crossref]

2015 (3)

2014 (8)

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, Y. H. Cha, D. Y. Jeong, and D. I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃,” Opt. Express 22(20), 24055–24061 (2014).
[Crossref] [PubMed]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

2013 (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

2012 (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449, 393–396 (2012).
[Crossref]

2011 (3)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (1)

M. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

2009 (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

2008 (3)

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms,” Opt. Express 16(11), 8181–8189 (2008).
[Crossref] [PubMed]

A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[Crossref]

2005 (1)

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

2002 (1)

K. Sohn and J. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun. 203(3-6), 271–276 (2002).
[Crossref]

2000 (1)

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1996 (1)

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1993 (1)

J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
[Crossref]

1988 (1)

1977 (1)

W. Richter and C. Becker, “A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1),” Phys. Status Solidi 84(2), 619–628 (1977).
[Crossref]

1974 (1)

T. Anderson and H. Krause, “Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. B 30(5), 1307–1310 (1974).
[Crossref]

Abramski, K.

M. Kowalczyk, J. Sotor, and K. Abramski, “59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode,” Laser Phys. Lett. 13(3), 035801 (2016).
[Crossref]

Abramski, K. M.

Anderson, T.

T. Anderson and H. Krause, “Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. B 30(5), 1307–1310 (1974).
[Crossref]

Atuchin, V.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Aus der Au, J.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Becker, C.

W. Richter and C. Becker, “A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1),” Phys. Status Solidi 84(2), 619–628 (1977).
[Crossref]

Boguslawski, J.

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Bostwick, A.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Braun, B.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Cha, Y. H.

Chen, H.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Chen, J.

J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
[Crossref]

Chen, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Choi, S. Y.

Chong, A.

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Dai, D.

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Doran, N. J.

Dou, Z.

Du, J.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Fang, X.

Ferrari, A.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Fluck, R.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Gavrilova, T.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Godlewska, E.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Grodecki, K.

Han, H.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Hasan, M.

M. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Hasan, T.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Haus, H.

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
[Crossref]

He, S.

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Honninger, C.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Ippen, E.

J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
[Crossref]

Jeong, D. Y.

Jeong, H.

Jhon, Y. M.

Jiang, G.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, I.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Jung, M.

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kane, C.

M. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Kardas, T. M.

Karpinski, G.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Kartner, F.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Keller, U.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kifune, K.

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kokh, K.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Koo, J.

Kopf, D.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kowalczyk, M.

M. Kowalczyk, J. Sotor, and K. Abramski, “59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode,” Laser Phys. Lett. 13(3), 035801 (2016).
[Crossref]

Kracht, D.

Krause, H.

T. Anderson and H. Krause, “Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. B 30(5), 1307–1310 (1974).
[Crossref]

Kubota, Y.

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

Kuratieva, N.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Kuzmenko, A.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Lee, J.

Lee, J. H.

Lee, K.

Lee, S.

Lei, M.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Lim, C.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Liu, J.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Loh, K.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Macherzynski, W.

Mania, R.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Mars, K.

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Martinez, A.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Matsunaga, T.

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

Matuschek, N.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Michalska, M.

Mikula, A.

Morgner, U.

Müller, E.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Ostler, M.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Paletko, P.

Pang, L.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Park, J.

Pervukhina, N.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Radzewicz, C.

Renninger, W.

Richter, W.

W. Richter and C. Becker, “A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1),” Phys. Status Solidi 84(2), 619–628 (1977).
[Crossref]

Rotenberg, E.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Rotermund, F.

Rozhin, A.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Ruehl, A.

Seyller, T.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Shen, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Sobon, G.

Sohn, K.

K. Sohn and J. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun. 203(3-6), 271–276 (2002).
[Crossref]

Song, J.

K. Sohn and J. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun. 203(3-6), 271–276 (2002).
[Crossref]

Song, Y.

Song, Y.-W.

Sotor, J.

Stepanenko, Y.

Stiewe, C.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sun, Z.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Surovtsev, N.

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Szczepanek, J.

Tan, P.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Tang, D.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tian, J.

Tian, W.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Walter, A.

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Wandt, D.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Wang, Q.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wei, Z.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Weingarten, K.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wen, S.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Wise, F.

Wojciechowski, K.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Wojciechowski, K. T.

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449, 393–396 (2012).
[Crossref]

Wood, D.

Xiang, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Xu, B.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Xu, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Yamada, N.

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

Yamashita, S.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Yan, P.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yeom, D. I.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, L.

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Yu, Z.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, H.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Ziolkowski, P.

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Zybala, R.

Acta Crystallogr. B (2)

K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, “Extremely long period-stacking structure in the Sb-Te binary system,” Acta Crystallogr. B 61(5), 492–497 (2005).
[Crossref] [PubMed]

T. Anderson and H. Krause, “Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. B 30(5), 1307–1310 (1974).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. Rozhin, and A. Ferrari, “Nanotube-Polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

AIP Conf. Proc. (1)

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449, 393–396 (2012).
[Crossref]

Appl. Phys. Lett. (1)

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

J. Chen, H. Haus, and E. Ippen, “Stability of lasers mode locked by two saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 29(4), 1228–1232 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

M. Kowalczyk, J. Sotor, and K. Abramski, “59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode,” Laser Phys. Lett. 13(3), 035801 (2016).
[Crossref]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nat. Phys. (1)

I. Crassee, J. Levallois, A. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Nature (2)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Sohn and J. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun. 203(3-6), 271–276 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Status Solidi (1)

W. Richter and C. Becker, “A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1),” Phys. Status Solidi 84(2), 619–628 (1977).
[Crossref]

Rev. Mod. Phys. (1)

M. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Sci. Rep. (2)

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 5, 19997 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

K. Kokh, V. Atuchin, T. Gavrilova, N. Kuratieva, N. Pervukhina, and N. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Vacuum (1)

K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Müller, “Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering,” Vacuum 82(10), 1003–1006 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 SEM image of a surface (a) and a cross-section (b) of the fabricated Sb2Te3 layer.
Fig. 2
Fig. 2 Characterization of the fabricated Sb2Te3 layer: Raman spectrum (a) and XRD diffraction analysis (b).
Fig. 3
Fig. 3 Experimental setup employed for measurements of the polarizing properties of the Sb2Te3 fiber devices (a). Polar plot of polarization-dependent transmittance with a corresponding sin2 fit (b).
Fig. 4
Fig. 4 Nonlinear transmission measurements for three different polarization states corresponding to the lowest (a), medium (b) and the highest (c) transmission of the 1 mm component.
Fig. 5
Fig. 5 Experimental setup of the Yb-doped fiber oscillator (a) and spectral filtering characteristic of the side-polished fiber with 2 mm long Sb2Te3 deposition.
Fig. 6
Fig. 6 Output characteristics of the laser with 1 mm long Sb2Te3 deposition. Optical spectrum of the pulse. Inset: Optical spectrum in logarithmic scale (a). RF spectrum of the output radiation (RBW: 2 MHz). Inset: RF spectrum of the fundamental beat note (RBW: 1 kHz) (b).
Fig. 7
Fig. 7 Output characteristics of the laser with 2 mm long Sb2Te3 deposition. Optical spectrum of the pulse. Inset: Optical spectrum in logarithmic scale (a). Autocorrelation trace with a corresponding Gaussian fit (50 ps span). Inset: RF spectrum of the fundamental beat note (RBW: 1 kHz) (b).
Fig. 8
Fig. 8 Output characteristics of the laser with 3 mm long Sb2Te3 deposition. Optical spectrum of the pulse. Inset: Optical spectrum in logarithmic scale (a). Autocorrelation trace with a corresponding Gaussian fit (50 ps span). Inset: RF spectrum of the fundamental beat note (RBW: 1 kHz) (b).

Tables (1)

Tables Icon

Table 1 Optical parameters of the SAs for various Sb2Te3 deposition length

Metrics