Abstract

The manipulation of terahertz (THz) signals, such as in phase control with modulation depths of 2π, is an important subject in THz photonics. In this work, an electrically controllable chiral liquid crystal (Ch-LC) cell with low chirality is used to develop a THz phase modulator with 2π tunability. The proposed Ch-LC device is insensitive to the polarization of electromagnetic waves in THz frequency range. The diluted chiral dopant enables the critical voltage of the Ch-LC cell to be effectively reduced to 0.24 V/μm from 3.65 for a typical Ch-LC cell with high chirality. The dependence of phase retardation on driving field and the polarization is examined. This THz 2π phase modulator has great potential for practical use.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate

Cho-Fan Hsieh, Ru-Pin Pan, Tsung-Ta Tang, Hung-Lung Chen, and Ci-Ling Pan
Opt. Lett. 31(8) 1112-1114 (2006)

Voltage-controlled liquid-crystal terahertz phase shifter with indium–tin–oxide nanowhiskers as transparent electrodes

Chan-Shan Yang, Tsung-Ta Tang, Po-Han Chen, Ru-Pin Pan, Peichen Yu, and Ci-Ling Pan
Opt. Lett. 39(8) 2511-2513 (2014)

Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals

Eva Oton and Estelle Netter
Opt. Express 25(12) 13314-13323 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, Terahertz Imaging in Sensing with THz radiation (Spring-Verlag, 2002).
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  4. K. O. Thomas and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  5. C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
    [Crossref]
  6. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
    [Crossref]
  7. C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
    [Crossref] [PubMed]
  8. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
    [Crossref]
  9. H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
    [Crossref]
  10. J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
    [Crossref]
  11. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
    [Crossref]
  12. Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [Crossref]
  13. T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
    [Crossref] [PubMed]
  14. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  15. T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
    [Crossref]
  16. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
    [Crossref]
  17. M. Saito, A. Maruyama, and J. Fujiwara, “Polarization-independent refractive-index change of a cholesteric liquid crystal,” Opt. Express 5(7), 1588–1597 (2015).
    [Crossref]
  18. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E 80, 031709 (2009).
    [Crossref]
  19. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).
  20. A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85, 035430–1~6 (2012).
    [Crossref]
  21. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42(13), 2372–2376 (2003).
    [Crossref] [PubMed]
  22. C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref] [PubMed]
  23. C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
    [Crossref]
  24. K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
    [Crossref] [PubMed]
  25. K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
    [Crossref] [PubMed]
  26. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
    [Crossref] [PubMed]

2015 (2)

T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref] [PubMed]

M. Saito, A. Maruyama, and J. Fujiwara, “Polarization-independent refractive-index change of a cholesteric liquid crystal,” Opt. Express 5(7), 1588–1597 (2015).
[Crossref]

2014 (1)

2013 (2)

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

2012 (1)

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

2011 (2)

2009 (3)

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref] [PubMed]

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

2008 (2)

C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
[Crossref] [PubMed]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

2006 (2)

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

2005 (1)

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[Crossref]

2003 (1)

2002 (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1999 (1)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[Crossref]

1994 (1)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

1991 (1)

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[Crossref]

Altmann, K.

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Chang, C.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Chen, C. Y.

Chen, P.-H.

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

Dabrowski, R.

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Deibel, J. A.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Dierking, I.

Doane, J. W.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fuh, A. Y. G.

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[Crossref]

Fujiwara, J.

M. Saito, A. Maruyama, and J. Fujiwara, “Polarization-independent refractive-index change of a cholesteric liquid crystal,” Opt. Express 5(7), 1588–1597 (2015).
[Crossref]

Garbat, K.

Ghattan, Z.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Glasser, J.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Hasek, T.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Hsieh, C. F.

C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
[Crossref] [PubMed]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

Huang, Y.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

Kawatsuki, N.

Kim, H. R.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[Crossref]

Kim, K.-H.

Koch, M.

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref] [PubMed]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Kopschinski, O.

Lai, Y. C.

Lee, J. H.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[Crossref]

Lee, J.-H.

Lee, S. D.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[Crossref]

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[Crossref]

Li, Y. T.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

Lin, C. H.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

Lin, C. J.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

Lin, M.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Lin, T. H.

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[Crossref]

Maruyama, A.

M. Saito, A. Maruyama, and J. Fujiwara, “Polarization-independent refractive-index change of a cholesteric liquid crystal,” Opt. Express 5(7), 1588–1597 (2015).
[Crossref]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

Nagatsuma, T.

K. O. Thomas and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Noda, K.

Ono, H.

Pan, C. L.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
[Crossref] [PubMed]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42(13), 2372–2376 (2003).
[Crossref] [PubMed]

Pan, C.-L.

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Pan, R. P.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
[Crossref] [PubMed]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42(13), 2372–2376 (2003).
[Crossref] [PubMed]

Pan, R.-P.

Park, B. W.

Park, K.-H.

Patel, J. S.

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[Crossref]

Reuter, M.

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Saito, M.

M. Saito, A. Maruyama, and J. Fujiwara, “Polarization-independent refractive-index change of a cholesteric liquid crystal,” Opt. Express 5(7), 1588–1597 (2015).
[Crossref]

Sasaki, T.

Scheller, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Scherger, B.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Shahabadi, M.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Shen, C.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Shen, Z.-G.

Shieh, J.-M.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Song, D. H.

Tang, T. T.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

Tang, T.-T.

Thomas, K. O.

K. O. Thomas and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Tsai, T. R.

Vieweg, N.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref] [PubMed]

Wada, O.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Wen, C.-H.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Wilk, R.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref] [PubMed]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Wu, H. Y.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

Wu, S.-T.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Yang, C.-S.

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Yang, D. K.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yaniv, Z.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yoon, T.-H.

Yu, P.

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Zhang, X. C.

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Adv. Mater. (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915–3918 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[Crossref]

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[Crossref]

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[Crossref]

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and sub-millisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for Terahertz waves,” IEEE Photonics Technol. Lett. 21(11), 730–732 (2009).
[Crossref]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

K. O. Thomas and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete Terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Millim. Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281(18), 4623–4625 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (4)

D. Mittleman, Terahertz Imaging in Sensing with THz radiation (Spring-Verlag, 2002).

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E 80, 031709 (2009).
[Crossref]

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85, 035430–1~6 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The scheme of the cell for the THz-TDS system: (a) Ch-LC cell and (b) reference cell; (c) the picture of Ch-LC cell device.
Fig. 2
Fig. 2 (a) Experimental setup for THz time domain spectroscopy; (b) the terahertz temporal profile and (c) the spectrum of THz.
Fig. 3
Fig. 3 (a) The temporal profile of the THz signal before and after THz signal passes through the Ch-LC cells, (b) Terahertz temporal profile of the reference, focal conic texture, and homeotropic texture.
Fig. 4
Fig. 4 (a) The temporal profile of the THz signal before and after THz signal passes through the Ch-LCs cells filled with Ch-LCs with various pitch values; (b) driving voltage for different pitch lengths.
Fig. 5
Fig. 5 The THz temporal profiles after the reference cell (a) 4 mm Ch-LC cell and (b) 5 mm Ch-LC cell; (c) the applied voltage–dependent phase shift of the 5 mm Ch-LC cell for various frequencies; (d) the rising and falling time of the 5 mm Ch-LC cell for various overshoot voltages.
Fig. 6
Fig. 6 Polarization dependence of the THz phase shift of (a) 5 mm-thick Ch-LC cell at the 0, 700, and 1400 V, and (b) 1 mm-thick NLC cell at 0V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P= (HTP×C) 1
n eff =(2 n o + n e )/3

Metrics