Abstract

This paper reports a Ni-matrix CNT flexible field emission electron source fabricated by a novel implanting micromachining technology. For the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. By embedding CNT roots into Ni film using polymer matrix as transfer media, effective contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics were attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simplified X-ray imaging system was set up by modifying a traditional tube. The grey shadow that appears on the sensitive film after exposing to the radiation confirms the X-ray generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of high temperature processable CNT array for X-ray generation by micromachining

Bin Sun, Yan Wang, and Guifu Ding
Opt. Mater. Express 7(1) 32-42 (2017)

Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device

Ju Yeon Woo, Jongsoo Lee, Hansung Lee, Naesung Lee, Ji Hye Oh, Young Rag Do, and Chang-Soo Han
Opt. Express 21(10) 12519-12526 (2013)

Electrically-driven carbon nanotube-based plasmonic laser on silicon

Ke Liu and Volker J. Sorger
Opt. Mater. Express 5(9) 1910-1919 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
    [Crossref] [PubMed]
  2. O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
    [Crossref] [PubMed]
  3. H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
    [Crossref]
  4. T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
    [Crossref]
  5. X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
    [Crossref] [PubMed]
  6. W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
    [Crossref]
  7. Y. Saito, Carbon Nanotube and Related Field Emitters: Fundamentals and Applications (John Wiley & Sons, 2010.).
  8. J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
    [Crossref]
  9. H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)
  10. Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
    [Crossref] [PubMed]
  11. D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
    [Crossref]
  12. J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
    [Crossref] [PubMed]
  13. A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
    [Crossref]
  14. C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
    [Crossref]
  15. J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

2014 (4)

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

2013 (1)

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

2012 (1)

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

2011 (1)

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

2010 (1)

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

2009 (1)

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

2006 (3)

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

1999 (2)

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Ajayan, P. M.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Al-Hamry, A.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

An, L.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

An, S. Y.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Avadhanula, A.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Baskaran, R.

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Benchirouf, A.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Bouhamed, A.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Bower, C.

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Bu, L.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Calderón-Colón, X.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

Cao, G.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

Cassell, A. M.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Chapline, M. G.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Chen, G.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Cho, S. O.

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

Choil, H. Y.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Curran, S.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Dai, H.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Dinh, T. N.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Dommann, A.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Elsener, H. R.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Fan, S.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Franklin, N. R.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Gao, B.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

Geng, H.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

Gerlach, C.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Giudice, S.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Gröning, O.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Gröning, P.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Ha, J. M.

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

Han, J. T.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Huang, J. J.

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Jang, D. M.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Jeong, H. D.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Jeong, H. J.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Jeong, S. Y.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Jin, S.

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Jo, K. C.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Jose-James, R.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Jung, H.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Jung, S. I.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Jung, Y. J.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Kanoun, O.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Kar, S.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Kaufmann, R.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Kim, D.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Kim, H. J.

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

Kim, H. Y.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Kim, J. M.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Kim, J. P.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Kim, J. S.

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Kochanski, G.

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Kottler, C.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Kumar, A.

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Lau, S. P.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Lee, C. J.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Lee, S. Y.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Leinenbach, C.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Li, X.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Longtin, R.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Milne, W. I.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Müller, C.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Nalamasu, O.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Neels, A.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Niedermann, P.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Noh, Y. R.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Ou, F. S.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Park, J. S.

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Park, J. Y.

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Pushparaj, V. L.

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

Raza, H. S.

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

Saito, Y.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Sanchez-Valencia, J. R.

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Sanli, A.

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Shin, D. H.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Sim, H. S.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Soldano, C.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Song, Y.-H.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Talapatra, S.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Tan, T. T.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Tanaka, J.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Tanemura, M.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Tombler, T. W.

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Vajtai, R.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Viswanathan, G.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Wang, Y. H.

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Xin, G. X.

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Yang, H. Y.

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

Yao, Z.

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Yun, K. N.

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

Zang, J. B.

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Zhang, J. H.

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Zhou, O.

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Zhu, W.

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Adv. Func. Mater. (1)

H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, and J. T. Han, “All-carbon nanotube-based flexible field-emission devices: from cathode to anode,” Adv. Func. Mater. 21, 1526–1532 (2011)

Appl. Phys. Lett. (4)

D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, “Field emission properties from flexible field emitters using carbon nanotube film,” Appl. Phys. Lett. 105(3), 033110 (2014).
[Crossref]

A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, “Contact transfer of aligned carbon nanotube arrays onto conducting substrates,” Appl. Phys. Lett. 89(16), 163120 (2006).
[Crossref]

T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters,” Appl. Phys. Lett. 88(10), 103105 (2006).
[Crossref]

W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75(6), 873–875 (1999).
[Crossref]

Carbon (1)

H. Jung, S. Y. An, D. M. Jang, J. M. Kim, J. Y. Park, and D. Kim, “A multi-wall carbon nanotube/polymethyl methacrylate composite for use in field emitters on flexible substrates,” Carbon 50(3), 987–993 (2012).
[Crossref]

Mater. Lett. (1)

J. H. Zhang, J. B. Zang, J. J. Huang, Y. H. Wang, and G. X. Xin, “Synthesis of an architectural electrode based on manganese oxide and carbon nanotubes for flexible supercapacitors,” Mater. Lett. 126, 24–27 (2014).
[Crossref]

Microelectron. Eng. (1)

C. Kottler, R. Longtin, S. Giudice, R. Jose-James, P. Niedermann, A. Neels, R. Kaufmann, J. R. Sanchez-Valencia, H. R. Elsener, O. Gröning, C. Leinenbach, P. Gröning, and A. Dommann, “X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters,” Microelectron. Eng. 122, 13–19 (2014).
[Crossref]

Nano Lett. (1)

Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett. 6(3), 413–418 (2006).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J. M. Ha, H. J. Kim, H. S. Raza, and S. O. Cho, “Highly stable carbon nanotube field emitters on small metal tips against electrical arcing,” Nanoscale Res. Lett. 8(1), 355 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, “A carbon nanotube field emission cathode with high current density and long-term stability,” Nanotechnology 20(32), 325707 (2009).
[Crossref] [PubMed]

Science (1)

S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science 283(5401), 512–514 (1999).
[Crossref] [PubMed]

Sensors (Basel) (1)

O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors (Basel) 14(6), 10042–10071 (2014).
[Crossref] [PubMed]

Thin Solid Films (1)

J. S. Park, J. P. Kim, Y. R. Noh, K. C. Jo, S. Y. Lee, and H. Y. Choil, “X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films,” Thin Solid Films 519, 1743–1748 (2010).

Other (1)

Y. Saito, Carbon Nanotube and Related Field Emitters: Fundamentals and Applications (John Wiley & Sons, 2010.).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Processes of the implanting technology for manufacturing the flexible field emitter.
Fig. 2
Fig. 2 (a) Optical image of the glass wafer after processing, the inset shows the optical image of the Ni film, twisted and rolled up; SEM images of the film surface, (b) from top, and (c) from oblique directions.
Fig. 3
Fig. 3 (a) Raman Spectrum for Ni film, CNT, and Ni-CNT emitter surface; (b) D bond and G bond decomposition for CNT, and Ni-CNT emitter surface.
Fig. 4
Fig. 4 Emission current vs. applied voltage curves of the Ni film. The inset represents the FN plots derived from the curves of current vs. electric fields.
Fig. 5
Fig. 5 Emission stability of the MWCNT field emitters, operated in continuous DC mode.
Fig. 6
Fig. 6 (a) Emission current-applied voltage characteristics and (b) the corresponding F-N plots for the Ni film emitter as a function of the bending angle. The inset in (a) shows a schematic diagram of the flexible field emission setup. The inset in (b) shows a photo of the test setup.
Fig. 7
Fig. 7 (a) schematic diagram of the X-ray source; (b) photograph of the X-ray source assembly; (c) photographs of developed film plates exposed at different emission current: 0, 47, 102, 213, 307, and 423 uA.
Fig. 8
Fig. 8 Photographs of (a) the developed sensitive plate, the inset shows the magnitude of the Ni badge; (b) magnitude of the blackened shade.

Metrics