Abstract

We report the design, fabrication and characterization of CMOS compatible metal-insulator-metal (MIM) plasmonic resonators made of tungsten and silicon nitride for the mid-infrared range. These structures give rise to spectrally selective emission/absorption, which is of particular interest in the field of non-dispersive infrared (NDIR) gas spectroscopy. In this paper, we demonstrate large scale fabrication on 200 mm silicon wafer of such devices, and show some of their main characteristics, such as tunability, multi-spectral sources, polarization-independance and consistency between reflectivity and emissivity measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental realization of perfect terahertz plasmonic absorbers using highly doped silicon substrate and CMOS-compatible techniques

Ting Wang, Su Shen, Jianjun Liu, Yusheng Zhang, and Zhanghua Han
Opt. Mater. Express 6(2) 523-530 (2016)

CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS

Mohammadamir Ghaderi, Ehsan Karimi Shahmarvandi, and Reinoud F. Wolffenbuttel
Opt. Mater. Express 8(7) 1696-1707 (2018)

CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
    [Crossref] [PubMed]
  2. D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
    [Crossref]
  3. J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
    [Crossref]
  4. P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
    [Crossref]
  5. A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
    [Crossref]
  6. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
    [Crossref]
  7. J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
    [Crossref]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  10. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  11. G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
    [Crossref]
  12. A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
    [Crossref]
  13. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  14. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  15. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).
  16. J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
    [Crossref]
  17. A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
    [Crossref]
  18. P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
    [Crossref]

2015 (2)

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

2014 (2)

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

2012 (3)

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
[Crossref]

2011 (4)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

2008 (1)

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

1996 (1)

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Barritault, P.

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

Bauer, D.

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Benecke, W.

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Benisty, H.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Besbes, M.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bouchon, P.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Boutami, S.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

Brucoli, G.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Brun, M.

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

Chang, P.-E.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Chang, Y.-T.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Chen, H.-H.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Cheng, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Costantini, D.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

de Lamaestre, R. E.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ebert, M.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Gawarikar, A. S.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
[Crossref]

Gebhard, M.

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Gidon, S.

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Greffet, J.-J.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Haïdar, R.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Heeger, M.

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hildenbrand, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Hu, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jiang, Y.-W.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Korvink, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Kurzinger, A.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Lamprecht, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Lee, S.-C.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Lefebvre, A.

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liu, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Naumann, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Nicoletti, S.

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

Ning, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Peter, C.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shea, R. P.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
[Crossref]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Talghader, J. J.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Tzuang, L. D.-C.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wollenstein, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Wu, Y.-T.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ye, Y.-H.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

Zhang, D.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Zhang, Z. M.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

Zhao, B.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

AIP Adv. (1)

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “Radiation efficiency of narrowband coherent thermal emitters,” AIP Adv. 3(3), 032113 (2012).
[Crossref]

Appl. Phys. Lett. (6)

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett. 98(7), 073111 (2011).
[Crossref]

IEEE Sens. J. (1)

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

Laser Photonics Rev. (2)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

A. Lefebvre, D. Costantini, G. Brucoli, S. Boutami, J.-J. Greffet, and H. Benisty, “Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications,” Sens. Actuators B Chem. 213, 53–58 (2015).
[Crossref]

Sens. Actuators Phys. (2)

P. Barritault, M. Brun, S. Gidon, and S. Nicoletti, “Mid-IR source based on a free- standing microhotplate for autonomous CO2 sensing in indoor applications,” Sens. Actuators Phys. 172(2), 379–385 (2011).
[Crossref]

D. Bauer, M. Heeger, M. Gebhard, and W. Benecke, “Design and fabrication of a thermal infrared emitter,” Sens. Actuators Phys. 55(1), 57–63 (1996).
[Crossref]

Sensors (Basel) (1)

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel) 12(7), 9635–9665 (2012).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of the MIM structure; (b) Scanning Electron Microscope (SEM) image of the realized resonators; (c) 200 mm silicon wafer with MIMs. Each die is 5 × 5mm2 and consists of a specific kind of MIMs.
Fig. 2
Fig. 2 (a) Emissivity simulation of L = 803 nm MIM resonators as those of Fig. 1(a), and colorbar on top; (b) same simulation with an extra SiN 100-nm-thick added protective layer; inducing a red shift of the resonance; (c) characterization of realized MIMs. The angular range of this characterization is the one not shaded in (a,b) . Simulations are carried out with RCWA, while characterizations rely on a setup involving an angularly resolved FTIR.
Fig. 3
Fig. 3 Measured and simulated MIM spectral emissivities from the reflectivity spectrum at 13° from normal incidence, for three different sizes L of patches as indicated. Solid lines: experimental; dashed lines: simulation with empirical Lorentizan-type broadening included; inset: peak region with non-broadened RCWA simulations (dashed lines).
Fig. 4
Fig. 4 Illustration of a bi-MIM behavior: (a),(b): Simulated magnetic field intensity at resonance inside the insulating layer, for the two resonant frequencies; (c) SEM image of the device, with patches of lengths L 1 =814 nm and L 2 =726 nm ; (d) Comparison of the simulated and measured spectra at 13° from normal incidence (simulation with broadening with the same function as used in Fig. 3, showing the same degree of smearing as experimental data).. Inset:same spectra as the main figure, with an added dash-dotted line showing in addition the non broadened spectrum, with the two peaks related to the two mode patterns (a,b).
Fig. 5
Fig. 5 MIMs emissivity characterization in TM (left) and TE (right) polarization using a polarizer on the optical path of the FTIR.
Fig. 6
Fig. 6 Direct measurement of the emissivity using the L = 803 nm heated sample as an external source for the FTIR.

Metrics