Abstract

Titanium oxynitride (TiNxOy) thin films are deposited by RF sputtering with various N2 flow rates. Two distinct absorption bands, one in the photon energies of ~0.5 – 2.5 eV and the other in the energies of ~3.5 – 5 eV, which correspond to the localized surface plasmon resonance (LSPR) of the TiN nanoparticles in the thin films and the interband transitions in TiNxOy, respectively, are observed in the absorption measurement. A Drude-Lorentz model, including the contributions of the free electrons, LSPR and interband transitions, is able to well fit the spectroscopic ellipsometric (SE) data. The resonance energy and strength of the LSPR oscillator are accurately determined from the SE analysis. The resonance energy is in the range of ~1 – 1.3 eV and blue-shifts with increasing N2 flow rate; and the strength decreases significantly with increasing N2 flow rate. The plasma energy yielded from the SE analysis shows a correlation with the conduction electron concentration obtained from the Hall effect measurement. It is shown that the LSPR plays a significant role in the complex dielectric function of the TiNxOy grains at the low photon energies (~0.5 – 1.5 eV).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings

Feiliang Chen, Shao-Wei Wang, Liming Yu, Xiaoshuang Chen, and Wei Lu
Opt. Mater. Express 4(9) 1833-1847 (2014)

Ultrafast pump-probe surface plasmon resonance spectroscopy of thin gold films

A. Devizis, V. Vaicikauskas, and V. Gulbinas
Appl. Opt. 45(11) 2535-2539 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Chan and F. H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Tech. 203(5–7), 614–618 (2008).
    [Crossref]
  2. J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
    [Crossref]
  3. S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
    [Crossref]
  4. J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
    [Crossref]
  5. J. C. Francois and M. Sigrist, “The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater. 7(3), 299–312 (1982).
    [Crossref]
  6. M. Lazarov, B. Röhle, T. Eisenhammer, and R. Sizmann, “TiNxOy-Cu-coatings for low emissive solar selective absorbers,” Proceedings of the Soc. Photo. Opt. Instrumentat. Engineers (SPIE) 1536, 183–191 (1991).
  7. F. Chen, S. W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833 (2014).
    [Crossref]
  8. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  9. G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  10. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
    [Crossref]
  11. N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
    [Crossref]
  12. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  13. S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
    [Crossref]
  14. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  15. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
    [Crossref]
  16. U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
    [Crossref] [PubMed]
  17. M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
    [Crossref] [PubMed]
  18. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  19. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
    [Crossref]
  20. J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
    [Crossref]
  21. N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
    [Crossref]
  22. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 478–489 (2015).
    [Crossref]
  23. S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
    [Crossref]
  24. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007), pp. 81–87.
    [Crossref]
  25. S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
    [Crossref]
  26. X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
    [Crossref]
  27. T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
    [Crossref]
  28. X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
    [Crossref] [PubMed]
  29. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
    [Crossref] [PubMed]
  30. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
    [Crossref]
  31. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
    [Crossref]

2015 (2)

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 478–489 (2015).
[Crossref]

2014 (6)

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

F. Chen, S. W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833 (2014).
[Crossref]

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (2)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

2012 (4)

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
[Crossref]

2011 (2)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

2010 (1)

M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref] [PubMed]

2009 (1)

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
[Crossref]

2008 (2)

M. H. Chan and F. H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Tech. 203(5–7), 614–618 (2008).
[Crossref]

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

2007 (1)

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

2006 (1)

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[Crossref]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

2003 (2)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

2002 (1)

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

1999 (1)

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

1982 (1)

J. C. Francois and M. Sigrist, “The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater. 7(3), 299–312 (1982).
[Crossref]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Appleby, D. J. R.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Arac, E.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Bogdanowicz, R.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Boltasseva, A.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Boo, J. H.

S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
[Crossref]

Campbell, A. L.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Chan, M. H.

M. H. Chan and F. H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Tech. 203(5–7), 614–618 (2008).
[Crossref]

Chappé, J. M.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Chen, F.

Chen, T. P.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Chen, X.

Cho, S. J.

S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
[Crossref]

Cortie, M. B.

M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref] [PubMed]

Dash, S.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Dong, G.

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Dowd, A.

M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Eyink, K.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Francois, J. C.

J. C. Francois and M. Sigrist, “The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater. 7(3), 299–312 (1982).
[Crossref]

Fung, S.

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Ganti, S.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Giddings, J.

M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref] [PubMed]

Graciani, J.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
[Crossref]

Grant, J. T.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

Hamad, S.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
[Crossref]

Hippler, R.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Ho, P. F.

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Hu, E. L.

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 478–489 (2015).
[Crossref]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Jakubiak, R.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Jose, F.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Jung, C. K.

S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
[Crossref]

Kang, J. H.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Kim, K. J.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

King, P. J.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Kwa, K. S. K.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Leong, K. C.

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Li, X. D.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Lintymer, J.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Liu, P.

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

Liu, Y.

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Liu, Y. C.

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

Liu, Z.

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Lu, F. H.

M. H. Chan and F. H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Tech. 203(5–7), 614–618 (2008).
[Crossref]

Lu, W.

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Martin, N.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Martinez, G.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Mulvaney, P.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Ndukaife, J. C.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Ni, X. J.

Nnanna, A. G. A.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

O’Neill, A.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Pachter, R.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Ponon, N. K.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Prescott, S. W.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[Crossref]

Quaas, M.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Ramana, C. V.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Ramaseshan, R.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Sands, T. D.

Sanz, J. F.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
[Crossref]

Schroeder, J. L.

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

Sigrist, M.

J. C. Francois and M. Sigrist, “The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater. 7(3), 299–312 (1982).
[Crossref]

Steffen, H.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Sthal, F.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Sundari, S. T.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Takadoum, J.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Terwagne, G.

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Tse, M. S.

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Tyagi, A. K.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Wang, S. W.

White, N.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Wrehde, S.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Wulff, H.

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Yu, L.

Zgrabik, C. M.

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 478–489 (2015).
[Crossref]

Zhu, S.

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

Adv. Mater. (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Appl. Phys. B-Lasers Opt. (1)

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B-Lasers Opt. 107(2), 285–291 (2012).
[Crossref]

Appl. Phys. Lett. (2)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

T. P. Chen, Y. Liu, M. S. Tse, P. F. Ho, G. Dong, and S. Fung, “Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry,” Appl. Phys. Lett. 81(25), 4724 (2002).
[Crossref]

Appl. Surf. Sci. (2)

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253(12), 5312–5316 (2007).
[Crossref]

Curr. Appl. Phys. (1)

S. J. Cho, C. K. Jung, and J. H. Boo, “A study on the characteristics of TiOxNy thin films with various nitrogen flow rate by PECVD method,” Curr. Appl. Phys. 12, S29–S34 (2012).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quant. 19(3), 1–7 (2013).
[Crossref]

J. Appl. Phys. (5)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[Crossref]

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

X. D. Li, T. P. Chen, P. Liu, Y. Liu, Z. Liu, and K. C. Leong, “A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness,” J. Appl. Phys. 115(10), 103512 (2014).
[Crossref]

J. Nanopart. Res. (1)

S. Zhu, T. P. Chen, Y. C. Liu, Y. Liu, and S. Fung, “A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles,” J. Nanopart. Res. 14(5), 856 (2012).
[Crossref]

Nano Lett. (1)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

M. B. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (4)

Phys. Rev. B (1)

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition,” Phys. Rev. B 80(18), 184112 (2009).
[Crossref]

Sol. Energy Mater. (1)

J. C. Francois and M. Sigrist, “The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater. 7(3), 299–312 (1982).
[Crossref]

Surf. Coat. Tech. (1)

M. H. Chan and F. H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Tech. 203(5–7), 614–618 (2008).
[Crossref]

Thin Solid Films (1)

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Vacuum (1)

S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82(10), 1115–1119 (2008).
[Crossref]

Other (2)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007), pp. 81–87.
[Crossref]

M. Lazarov, B. Röhle, T. Eisenhammer, and R. Sizmann, “TiNxOy-Cu-coatings for low emissive solar selective absorbers,” Proceedings of the Soc. Photo. Opt. Instrumentat. Engineers (SPIE) 1536, 183–191 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 XPS measurement of the TiNxOy thin film deposited only with Ar flow rate of 10 sccm: (a) survey scan, (b) Ti 2p, (c) N 1s, and (d) O 1s.
Fig. 2
Fig. 2 Conduction-electron concentrations of the TiNxOy thin films obtained from the Hall effect measurement.
Fig. 3
Fig. 3 Experimental absorbance spectra in the wavelength range of 250 – 2500 nm for the TiNxOy thin films deposited with various N2 flow rates: (a) 0 sccm, (b) 3 sccm, (c) 6 sccm, and (d) 9 sccm. The inserts in Figs. 3(a)–3(d) show the AFM images of the TiNxOy thin films. (e) Normalized absorbance spectra of the TiNxOy thin films in the photon energy range of 0.5 – 5 eV. The insert in Fig. 3(e) is a schematic illustration of electron cloud oscillating in the TiN nanoparticles under the influence of changing electric field of light. (f) HRTEM image of the TiNxOy thin films deposited only with Ar. The insert in Fig. 3(f) is the corresponding SAD pattern.
Fig. 4
Fig. 4 Ellipsometric fittings to the experimental ellipsometric angles (Ψ and Δ) for various N2 flow rates. The insert in Fig. 4(a) shows the three-phase model (i.e., air/TiNxOy layer (grains + air voids)/Si substrate) used in the ellipsometric modeling.
Fig. 5
Fig. 5 LSPR resonance energy as a function of N2 flow rate.
Fig. 6
Fig. 6 LSPR strength (fLSPR) and the normalized absorbance peak intensity as a function of N2 flow rate.
Fig. 7
Fig. 7 (a) Ep as a function of N2 flow rate. The conduction-electron concentrations (Nc) obtained from the Hall effect measurement are also included for comparison. (b) Ep2 versus Nc.
Fig. 8
Fig. 8 Real part of complex dielectric function in the low energy range of 0.5 – 2.5 eV: (a) the contribution of LSPR for various N2 flow rates; and (b) individual contributions of the LSPR and Drude term for 0 sccm N2 flow rate. The εr of the TiNxOy grains deposited with 0 sccm N2 flow rate and εr of bulk TiN are included in Fig. 8(b) for comparison.
Fig. 9
Fig. 9 Imaginary part of complex dielectric function in the low energy range of 0.5 – 2.5 eV: (a) the contribution of LSPR for various N2 flow rates; and (b) individual contributions of the LSPR and Drude term for 0 sccm N2 flow rate. The εm of the TiNxOy grains deposited with 0 sccm N2 flow rate and εm of bulk TiN are included in Fig. 9(b) for comparison.

Tables (1)

Tables Icon

Table 1 Relative atomic percentages of Ti, N, and O in the TiNxOy thin films obtained from the XPS analysis

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε(E)= ε + ε Drude + ε LSPR + ε interbands
ε Drude (E)= E p 2 E 2 +i Γ D E
ε LSPR (E)= f LSPR E LSPR 2 E LSPR 2 E 2 i Γ LSPR E
ε interbands (E)= f i E i 2 E i 2 E 2 i Γ i E
ε Ti N x O y ε i ε Ti N x O y +2 ε i f= ε air ε i ε air +2 ε i (f1)
E p = N v q 2 ε 0 m
E p 2 =α( N 0 + N c )

Metrics