Abstract

We examined the flexodomains (FDs) in chiral bent-core nematics (BCNs), and demonstrated the morphology changed from parallel stripes in pure BCN to oblique ones in chiral BCNs. While the magnitude of obliqueness angle strongly depended on the concentration of chiral dopant, its sign was determined by the polarity of the driving voltage, thus FDs appeared alternately as symmetrical oblique stripes in the positive and negative half a.c. voltage cycles, respectively. Also the HTP value of chiral dopant in BCNs can be determined based on this phenomenon. The polarity-dependent behavior of FDs can be potentially exploited in photonic devices with a bistable function.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Domain structures as optical gratings controlled by electric field in a bent-core nematic

Ming-Ya Xu, Meng-jie Zhou, Ying Xiang, Péter Salamon, Nándor Éber, and Ágnes Buka
Opt. Express 23(12) 15224-15234 (2015)

Observation of the photorefractive effects in bent-core liquid crystals

Ying Xiang, Yi-Kun Liu, Zhi-Yong Zhang, Hong-Jun You, Tian Xia, Everett Wang, and Zheng-Dong Cheng
Opt. Express 21(3) 3434-3444 (2013)

Continuously adjustable period optical grating based on flexoelectric effect of a bent-core nematic liquid crystal in planar cells

Rui Yuan, Wen-Jiang Ye, Hong-Yu Xing, Zhen-Jie Li, Ting-Ting Sun, Yu-Bao Sun, Ji-Liang Zhu, Ying Xiang, Zhi-Yong Zhang, and Ming-Lei Cai
Opt. Express 26(4) 4288-4299 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [Crossref]
  2. W. Lee and S. T. Wu, “Focus issue introduction: Liquid crystal materials for photonic applications,” Opt. Mater. Express 1(8), 1585–1587 (2011).
    [Crossref]
  3. J. Kim, J. H. Suh, B. Y. Lee, S. U. Kim, and S. D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
    [Crossref] [PubMed]
  4. V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).
  5. P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
    [Crossref]
  6. Á. Buka and N. Éber, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperial College, London, 2012).
  7. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).
  8. S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
    [Crossref]
  9. A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051706 (2011).
    [Crossref] [PubMed]
  10. R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
    [Crossref]
  11. L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr.15(3), 514–515 (1970) (Kristallografiya 15(3), 594–595 (1970)).
  12. P. Salamon, Ph.D dissertation, Institute for Solid State Physics and Optics, Hungarian Academy of Sciences.
  13. W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51(9), 4092 (1969).
    [Crossref]
  14. C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
    [Crossref]
  15. S. Kumar and A. N. Gowda, “The chemistry of bent-core molecules forming nematic liquid crystals,” Liq. Cryst. Rev. 3(2), 99–145 (2015).
    [Crossref]
  16. S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
    [Crossref]
  17. Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
    [Crossref] [PubMed]
  18. H. Takezoe and Y. Takanishi, “Bent-Core Liquid Crystals: Their Mysterious and Attractive World,” Jpn. J. Appl. Phys. 45(2A), 597–625 (2006).
    [Crossref]
  19. D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
    [Crossref] [PubMed]
  20. Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
    [Crossref] [PubMed]
  21. R. Stannarius and J. Heuer, “Electroconvection in nematics above the splay Fréedericksz transition,” Eur Phys J E Soft Matter 24(1), 27–33 (2007).
    [Crossref] [PubMed]
  22. Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
    [Crossref]
  23. Z. G. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bentshaped molecules,” New J. Phys. 12(11), 113018 (2010).
    [Crossref]
  24. G. Zhu, X. W. Lin, W. Hu, Z. G. Zheng, H. F. Wang, H. Q. Cui, D. Shen, and Y. Q. Lu, “Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups,” Opt. Mater. Express 1(8), 1478–1483 (2011).
    [Crossref]
  25. Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett. 11(1), 011601 (2013).
    [Crossref]
  26. S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
    [Crossref] [PubMed]
  27. J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
    [Crossref] [PubMed]
  28. A. Jákli, “Liquid crystals of the twenty-first century – nematic phase of bent-core molecules,” Liq. Cryst. Rev. 1(1), 65–82 (2013).
    [Crossref]
  29. P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
    [Crossref] [PubMed]
  30. P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
    [Crossref]
  31. A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
    [Crossref] [PubMed]
  32. K. S. Krishnamurthy, “Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(5), 052508 (2014).
    [Crossref] [PubMed]
  33. P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
    [Crossref]
  34. M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
    [Crossref]
  35. Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
    [Crossref] [PubMed]
  36. M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
    [Crossref] [PubMed]
  37. P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
    [Crossref]
  38. N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
    [Crossref] [PubMed]
  39. B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).
  40. Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977).
  41. Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
    [Crossref]
  42. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
    [Crossref]
  43. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30(4), 349–351 (2005).
    [Crossref] [PubMed]

2015 (6)

J. Kim, J. H. Suh, B. Y. Lee, S. U. Kim, and S. D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
[Crossref] [PubMed]

S. Kumar and A. N. Gowda, “The chemistry of bent-core molecules forming nematic liquid crystals,” Liq. Cryst. Rev. 3(2), 99–145 (2015).
[Crossref]

S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
[Crossref]

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

2014 (5)

K. S. Krishnamurthy, “Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(5), 052508 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

2013 (6)

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett. 11(1), 011601 (2013).
[Crossref]

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

A. Jákli, “Liquid crystals of the twenty-first century – nematic phase of bent-core molecules,” Liq. Cryst. Rev. 1(1), 65–82 (2013).
[Crossref]

2012 (2)

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
[Crossref]

2011 (3)

2010 (2)

Z. G. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bentshaped molecules,” New J. Phys. 12(11), 113018 (2010).
[Crossref]

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

2009 (1)

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

2008 (2)

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

2007 (3)

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

R. Stannarius and J. Heuer, “Electroconvection in nematics above the splay Fréedericksz transition,” Eur Phys J E Soft Matter 24(1), 27–33 (2007).
[Crossref] [PubMed]

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

2006 (2)

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

H. Takezoe and Y. Takanishi, “Bent-Core Liquid Crystals: Their Mysterious and Attractive World,” Jpn. J. Appl. Phys. 45(2A), 597–625 (2006).
[Crossref]

2005 (2)

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30(4), 349–351 (2005).
[Crossref] [PubMed]

1981 (1)

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

1979 (1)

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

1977 (1)

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977).

1969 (2)

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51(9), 4092 (1969).
[Crossref]

Belyaev, S. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

Belyaev, V. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

Blinov, L. M.

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

Bobylev, Yu. P.

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977).

Brown, C. V.

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

Buka, A.

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051706 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

Buka, Á.

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Cai, Z. G.

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Cheng, Z.-D.

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Chigrinov, V. G.

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

Cui, H. Q.

Dölle, S.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Eber, N.

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

Éber, N.

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Ferrarini, A.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Findeisen, S.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Fodor-Csorba, K.

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Gleeson, H. F.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

Gleeson, J. T.

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Goodby, J. W.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

Gortz, V.

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

Görtz, V.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Gowda, A. N.

S. Kumar and A. N. Gowda, “The chemistry of bent-core molecules forming nematic liquid crystals,” Liq. Cryst. Rev. 3(2), 99–145 (2015).
[Crossref]

Grebenkin, M. F.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

Greco, C.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Harden, J.

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Helfrich, W.

W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51(9), 4092 (1969).
[Crossref]

Heuer, J.

R. Stannarius and J. Heuer, “Electroconvection in nematics above the splay Fréedericksz transition,” Eur Phys J E Soft Matter 24(1), 27–33 (2007).
[Crossref] [PubMed]

Hu, W.

Huang, P.

Z. G. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bentshaped molecules,” New J. Phys. 12(11), 113018 (2010).
[Crossref]

Jákli, A.

A. Jákli, “Liquid crystals of the twenty-first century – nematic phase of bent-core molecules,” Liq. Cryst. Rev. 1(1), 65–82 (2013).
[Crossref]

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Kaur, S.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Kim, J.

Kim, S. U.

Krekhov, A.

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051706 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

Krishnamurthy, K. S.

K. S. Krishnamurthy, “Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(5), 052508 (2014).
[Crossref] [PubMed]

P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
[Crossref]

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Kumar, P.

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Kumar, S.

S. Kumar and A. N. Gowda, “The chemistry of bent-core molecules forming nematic liquid crystals,” Liq. Cryst. Rev. 3(2), 99–145 (2015).
[Crossref]

Lavrentovich, O. D.

Lee, B. Y.

Lee, S. D.

Lee, W.

Lehmann, A.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Li, J. M.

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Lin, X. W.

Liu, Y. K.

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Liu, Y.-K.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Lu, Y. Q.

Mathews, M.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Mbanga, B.

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Meyer, R. B.

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Mottram, N. J.

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

Nagamani, S. A.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Ostapenko, T.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Palomares, L. O.

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Panarin, Y.

S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
[Crossref]

Panarin, Y. P.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Panov, V. P.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Pesch, W.

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051706 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

Pikin, S. A.

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977).

Podyachev, Yu. B.

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

Prasad, S. K.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Rao, D. S.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Salamon, P.

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Senyuk, B. I.

Shen, D.

Smalyukh, I. I.

Smith, A. A. T.

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

Sprunt, S.

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Sreenilayam, S.

S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
[Crossref]

Sreenilayam, S. P.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Stannarius, R.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

R. Stannarius and J. Heuer, “Electroconvection in nematics above the splay Fréedericksz transition,” Eur Phys J E Soft Matter 24(1), 27–33 (2007).
[Crossref] [PubMed]

Suh, J. H.

Sun, M.

Tadapatri, P.

P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
[Crossref]

Takanishi, Y.

H. Takezoe and Y. Takanishi, “Bent-Core Liquid Crystals: Their Mysterious and Attractive World,” Jpn. J. Appl. Phys. 45(2A), 597–625 (2006).
[Crossref]

Takezoe, H.

H. Takezoe and Y. Takanishi, “Bent-Core Liquid Crystals: Their Mysterious and Attractive World,” Jpn. J. Appl. Phys. 45(2A), 597–625 (2006).
[Crossref]

Torgova, S. I.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Tóth-Katona, T.

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Trabi, C. L.

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

Tschierske, C.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Umansky, B. A.

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

Vij, J. K.

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
[Crossref]

Vistin, L. K.

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr.15(3), 514–515 (1970) (Kristallografiya 15(3), 594–595 (1970)).

Wang, E.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Wang, H. F.

Wang, J. H.

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Weissflog, W.

P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
[Crossref]

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Wiant, D.

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Wu, S. T.

Xia, T.

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Xiang, Y.

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

Xie, X. S.

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Xu, M. Y.

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Xu, M.-Y.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Yelamaggad, V.

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

You, H.-J.

Zhang, Z.-Y.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Zheng, Z. G.

Zhou, M. J.

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Zhu, G.

Appl. Phys. Lett. (5)

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

C. L. Trabi, C. V. Brown, A. A. T. Smith, and N. J. Mottram, “Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material,” Appl. Phys. Lett. 92(22), 223509 (2008).
[Crossref]

Y. Xiang, J. W. Goodby, V. Gortz, and H. F. Gleeson, “Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection,” Appl. Phys. Lett. 94(19), 193507 (2009).
[Crossref]

M. Y. Xu, Y. K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Y. Xiang, Y. K. Liu, X. S. Xie, J. M. Li, J. H. Wang, and Z. G. Cai, “A kind of two-dimensional electroconvection at ultralow electric frequency,” Appl. Phys. Lett. 97(20), 203507 (2010).
[Crossref]

Chin. Opt. Lett. (1)

Eur Phys J E Soft Matter (1)

R. Stannarius and J. Heuer, “Electroconvection in nematics above the splay Fréedericksz transition,” Eur Phys J E Soft Matter 24(1), 27–33 (2007).
[Crossref] [PubMed]

Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP (1)

B. A. Umansky, V. G. Chigrinov, L. M. Blinov, and Yu. B. Podyachev, “Flexoelectric instability in twisted liquid crystal structures,” Fourth Liquid Crystal Conference of Socialist Countries, Tbilisi. Sov. Phys. JETP 81, 1307–1317 (1981).

J. Chem. Phys. (1)

W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51(9), 4092 (1969).
[Crossref]

J. Mater. Chem. (1)

V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem. 17(3), 284–298 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Takezoe and Y. Takanishi, “Bent-Core Liquid Crystals: Their Mysterious and Attractive World,” Jpn. J. Appl. Phys. 45(2A), 597–625 (2006).
[Crossref]

Liq. Cryst. (1)

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Liq. Cryst. Rev. (2)

A. Jákli, “Liquid crystals of the twenty-first century – nematic phase of bent-core molecules,” Liq. Cryst. Rev. 1(1), 65–82 (2013).
[Crossref]

S. Kumar and A. N. Gowda, “The chemistry of bent-core molecules forming nematic liquid crystals,” Liq. Cryst. Rev. 3(2), 99–145 (2015).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

S. Sreenilayam, Y. Panarin, and J. K. Vij, “Dielectric Study of Nematic LC Built with Bent-core Molecules,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 63–67 (2015).
[Crossref]

New J. Phys. (1)

Z. G. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bentshaped molecules,” New J. Phys. 12(11), 113018 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (10)

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, “Nonstandard electroconvection in a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 041712 (2005).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

K. S. Krishnamurthy, “Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(5), 052508 (2014).
[Crossref] [PubMed]

P. Salamon, N. Eber, A. Krekhov, and A. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

S. P. Sreenilayam, Y. P. Panarin, J. K. Vij, S. I. Torgova, A. Lehmann, and C. Tschierske, “Flexoelectric polarization studies in bent-core nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022502 (2015).
[Crossref] [PubMed]

Y. Xiang, M. J. Zhou, M. Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051706 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Soft Matter (2)

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Tadapatri, K. S. Krishnamurthy, and W. Weissflog, “Patterned flexoelectric instability in a bent-core nematic liquid crystal,” Soft Matter 8(4), 1202–1214 (2012).
[Crossref]

Sov. Phys. JETP (2)

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50(5), 994–999 (1979).

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977).

Other (4)

Á. Buka and N. Éber, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperial College, London, 2012).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr.15(3), 514–515 (1970) (Kristallografiya 15(3), 594–595 (1970)).

P. Salamon, Ph.D dissertation, Institute for Solid State Physics and Optics, Hungarian Academy of Sciences.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 .Structurals of the achiral BCN compound 7P-CF2O-ODBP (a) and rodlike compound 1008 (b), respectively.
Fig. 2
Fig. 2 (Color online) Temporal evolution of diffraction spots from FD stripes driven by sinusoidal ac voltages (f = 0.02Hz, τ = 50.0S) within one period; (a)-(j) are representative snapshots taken at different time instants (t = 0.1τ, 0.2τ, 0.25τ, 0.30τ, 0.40τ, 0.60τ, 0.70τ, 0.75τ, 0.80τ, 0.90τ) in a chiral BCNs (C = 0.6wt%, and Vp = 21V); (k)-(t) are representative snapshots taken at the same time instants in the pure BCNs (C = 0.0wt%, and Vp = 25V). The arrows indicate the initial director n0 of pure BCNs.
Fig. 3
Fig. 3 (Color online) Representative snapshots of FD stripes in BCNs under POM driven by square voltages (f = 0.02Hz, Vp = Vc). (a) (b) C = 1.2wt% and Vp = 14V; (c) (d) C = 0.6wt% and Vp = 19V; (e) (f) C = 0.4wt% and Vp = 21V; (g) (h) C = 0.0wt% and Vp = 22V. The arrows indicate the initial director n0 of pure BCNs. The sizes of all snapshots are 50μm × 50μm.
Fig. 4
Fig. 4 (Color online) Representative snapshots of FD stripes in 1008 under POM driven by square voltages (f = 0.02Hz, Vp = Vc), where T = 60°C. (a) (b) C = 1.2wt% and Vp = 48V; (c) (d) C = 0.6wt% and Vp = 51V; (e) (f) C = 0.4wt% and Vp = 52V; (g) (h) C = 0.0wt% and Vp = 30V. The arrows indicate the initial director n0 of pure 1008. The sizes of all snapshots are 50μm × 50μm.
Fig. 5
Fig. 5 Representative snapshots of EC stripes in chiral BCN of C = 1.2wt% under POM driven by square ac voltages. (a) f = 15.0Hz, Vp = 7.0 V; (b) f = 6.0Hz, Vp = 7.0V. The arrows indicate the initial director n0 of pure BCNs. The sizes of all snapshots are 50μm × 50μm.

Tables (1)

Tables Icon

Table 1 Chirality dependence of the properties of FDs in the positive half period.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n ξ =cosθcos(φα), n ς =cosθsin(φα), n z =sinθ
F elas (1) = 1 2 K[ ( n ) 2 + ( ×n ) 2 ] = 1 2 K[ θ ,ζ 2 + θ ,z 2 + cos 2 θ( φ ,ζ 2 + φ ,z 2 )+2 cos 2 θcos(φα)( θ ,z φ ,ζ θ ,ς φ ,z ) ]
F elas (2) =K q 0 n×n=K q 0 { [cos(φα)] θ ,ζ +[sin(φα)]sinθcosθ φ ,ζ cos 2 θ φ ,z }
F fl = P fl E= e 11 E[sin(φα) sin 2 θ θ ,ζ +cos(φα)sinθcosθ φ ,ζ +sinθcosθ θ ,z ] e 33 E[ sin(φα) cos 2 θ θ ,ζ +sinθcosθ θ ,z ].
θ=θ(ζ,z)= θ 0 sin( qζ )cos( πz d ),φ=φ(ζ,z)= φ 0 cos( qζ )cos( πz d )
K( θ ,ζζ + θ ,zz )+[( e 11 e 33 )Ecosα+2K q 0 sinα] φ ,ζ =0
K( φ ,ζζ + φ ,zz )[( e 11 e 33 )Ecosα+2K q 0 sinα] θ ,ζ =0
E c = 2K( π d q 0 sinα ) | e 11 e 33 |cosα
tanα= 2K q 0 ( e 11 e 33 )E
E c (α)= 2K | e 11 e 33 | ( π d )cosα= E c (0)cosα
sinα 2d P

Metrics