Abstract

Measurements of the thermo-optic coefficient (dn/dT) are made on a binary phosphosilicate core glass optical fiber. Using these results, dn/dT for the P2O5 constituent is found to be −13.3 × 10−6 ± 8.0% K−1, a value much lower in magnitude than reported in the literature for this system. Its accurate elucidation is especially useful in guiding the design of low- or negative-thermo-optic glasses and optical fibers. The phosphosilicate core also has a coefficient of thermal expansion that is higher than that of the pure silica cladding. As a result, the clad fiber geometry slightly lessens the effectiveness of the negative-valued contribution to dn/dT by P2O5 relative to bulk glass.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient

Pi-Cheng Law, Yuh-Shiuan Liu, André Croteau, and Peter D. Dragic
Opt. Mater. Express 1(4) 686-699 (2011)

Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients

Pi-Cheng Law, André Croteau, and Peter D. Dragic
Opt. Mater. Express 2(4) 391-404 (2012)

Pockels’ coefficients of alumina in aluminosilicate optical fiber

Peter D. Dragic, John Ballato, Stephanie Morris, and Thomas Hawkins
J. Opt. Soc. Am. B 30(2) 244-250 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
    [Crossref]
  2. I. Riant, “UV-photoinduced fibre gratings for gain equalization,” Opt. Fiber Technol. 8(3), 171–194 (2002).
    [Crossref]
  3. J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
    [Crossref] [PubMed]
  4. E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
    [Crossref]
  5. W. Vogel, “Optical Properties of Oxide Glasses,” in Optical Properties of Glass, D.R. Uhlmann and N.J. Kreidl, eds. (American Ceramic Society Inc., 1991).
  6. J. H. Campbell, “Recent advances in phosphate laser glasses for high-power applications,” Proc. SPIE 10286, 1028602 (1996).
    [Crossref]
  7. H. Toratani, “Properties of laser glasses,” Ph.D. Thesis, Kyoto University, Japan, 1–187 (1989(.
  8. T. Izumitani and H. Toratani, “Temperature Coefficient of Electronic Polarizability in Optical Glasses,” J. Non-Cryst. Sol. 49, 611–619 (1980).
  9. S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).
  10. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
    [Crossref]
  11. P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
    [Crossref]
  12. C. Gilmore, Materials Science and Engineering Properties, (Cengage, 2013), Chap. 4.
  13. M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
    [Crossref]
  14. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), Chap. 6.
  15. P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
    [Crossref]
  16. K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
    [Crossref]
  17. L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).
  18. C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
    [Crossref]
  19. P. C. Schultz, “Fused P2O5 Type Glasses,” United States Patent # 4,042,404.

2017 (1)

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).

2016 (2)

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
[Crossref]

2015 (1)

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

2014 (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2009 (1)

2004 (1)

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[Crossref]

2002 (1)

I. Riant, “UV-photoinduced fibre gratings for gain equalization,” Opt. Fiber Technol. 8(3), 171–194 (2002).
[Crossref]

1980 (1)

T. Izumitani and H. Toratani, “Temperature Coefficient of Electronic Polarizability in Optical Glasses,” J. Non-Cryst. Sol. 49, 611–619 (1980).

1966 (1)

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
[Crossref]

1960 (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Ballato, A.

P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
[Crossref]

Ballato, J.

P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

Bock, W. J.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).

Cavillon, M.

Croteau, A.

Dragic, P.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

Dragic, P. D.

Furtick, J.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

Hawkins, T. W.

Izumitani, T.

T. Izumitani and H. Toratani, “Temperature Coefficient of Electronic Polarizability in Optical Glasses,” J. Non-Cryst. Sol. 49, 611–619 (1980).

Jones, M.

Kucera, C. J.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

Kumar, A.

Kumar, Y. B. P.

Law, P.-C.

Lee, E. T. Y.

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[Crossref]

Liu, Y.-S.

Marin, E.

Martin, S. W.

P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
[Crossref]

Meunier, J.-P.

Mikulic, P.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).

Prod’homme, L.

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Riant, I.

I. Riant, “UV-photoinduced fibre gratings for gain equalization,” Opt. Fiber Technol. 8(3), 171–194 (2002).
[Crossref]

Roy, R.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
[Crossref]

Ryan, C.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

Schmidt, E. D. D.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
[Crossref]

Stolen, R.

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

Taylor, E. R. M.

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[Crossref]

Toratani, H.

T. Izumitani and H. Toratani, “Temperature Coefficient of Electronic Polarizability in Optical Glasses,” J. Non-Cryst. Sol. 49, 611–619 (1980).

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
[Crossref]

Tuggle, M.

Varshney, R. K.

Vedam, K.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
[Crossref]

Int. J. Appl. Glass Sci. (2)

P. D. Dragic, S. W. Martin, A. Ballato, and J. Ballato, “On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibers—Part I: Materials modeling and experimental validation,” Int. J. Appl. Glass Sci. 7(1), 3–10 (2016).
[Crossref]

C. Ryan, P. Dragic, J. Furtick, C. J. Kucera, R. Stolen, and J. Ballato, “Pockels coefficients in multicomponent oxide glasses,” Int. J. Appl. Glass Sci. 6(4), 387–396 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49(10), 531–535 (1966).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Sol. (1)

T. Izumitani and H. Toratani, “Temperature Coefficient of Electronic Polarizability in Optical Glasses,” J. Non-Cryst. Sol. 49, 611–619 (1980).

J. Phys. Chem. Solids (1)

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[Crossref]

Materials (Basel) (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

I. Riant, “UV-photoinduced fibre gratings for gain equalization,” Opt. Fiber Technol. 8(3), 171–194 (2002).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Glasses (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Sensor. Actuat. Biol. Chem. (1)

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sensor. Actuat. Biol. Chem. 243, 1109–1114 (2017).

Other (6)

W. Vogel, “Optical Properties of Oxide Glasses,” in Optical Properties of Glass, D.R. Uhlmann and N.J. Kreidl, eds. (American Ceramic Society Inc., 1991).

J. H. Campbell, “Recent advances in phosphate laser glasses for high-power applications,” Proc. SPIE 10286, 1028602 (1996).
[Crossref]

H. Toratani, “Properties of laser glasses,” Ph.D. Thesis, Kyoto University, Japan, 1–187 (1989(.

P. C. Schultz, “Fused P2O5 Type Glasses,” United States Patent # 4,042,404.

C. Gilmore, Materials Science and Engineering Properties, (Cengage, 2013), Chap. 4.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Refractive index profile (RIP) of the fiber used in this study measured at 1000 nm.
Fig. 2
Fig. 2 Block diagram of the ring laser apparatus used to measure the thermo-optic coefficient of the P2O5 doped fiber.
Fig. 3
Fig. 3 Sample set of data in the measurements of the TOC of the FUT. The change in FSR is measured as a function of temperature (points). The data are normalized to the fundamental FSR. The blue line is a fit of Eq. (1) to the data.
Fig. 4
Fig. 4 CTE data for P2O5:SiO2 glass as a function of [P2O5] from [19] (points) and a fit using Eq. (2).
Fig. 5
Fig. 5 TOC for P2O5:SiO2 glass as a function of [P2O5] for a 2-layer (core-cladding) step index fiber with a tightly confined mode (orange) and bulk un-clad glass (blue).

Tables (1)

Tables Icon

Table 1 Physical properties of the constituent materials used in the modeling.a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dFSR dT = c ( nl+NL ) 2 ( nα l 0 +l dn dT )
g=m g 1 +( 1m ) g 2 .
m= M V,1 [ P 2 O 5 ] M V,1 [ P 2 O 5 ]+ M V,2 [ Si O 2 ]
Δn=( n 0 3 /2)( p 12 ν( p 11 + p 12 ) )ε,
Δn=( n 0 3 /2)( p 11 2ν p 12 )ε
ε=ω=( α core α cladding )( T T 0 ),
n= n 0 + dn dT ( T T 0 )+ n 0 3 2 ( α core α cladding )[ 2( p 12 ν( p 11 + p 12 ) )+( p 11 2ν p 12 ) ]( T T 0 ),

Metrics