Abstract

A Dy3+/Tb3+ co-doped Na2Gd4(MoO4)7 yellow laser crystal was successfully grown and analyzed. The use of Tb3+ codoping for enhancing the Dy3+:4F9/26H13/2 yellow emissions was investigated in the Na2Gd4(MoO4)7 crystal for the first time. In comparison to Dy3+ single-doped Na2Gd4(MoO4)7 crystal, the Dy3+/Tb3+ co-doped Na2Gd4(MoO4)7 crystal possessed a higher fluorescence branching ratio (80.2%), transition probability (3704 s−1), and fluorescence emission cross section (1.34×10−20 cm2) corresponding to the laser transition 4F9/26H13/2 of Dy3+. It was found that the introduced Tb3+ enhanced the 573 nm emission by depopulating the population of the laser lower level Dy3+: 6H13/2, and has little influence on the laser upper level Dy3+: 4F9/2 at the same time. These results suggest that Dy3+/Tb3+ co-doped Na2Gd4(MoO4)7 crystal may be an attractive host for developing solid state lasers at around 573 nm under a conventional 450 nm LD.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced 1.4 μm emissions of Tm3+ via Tb3+ deactivation in (Gd0.5Lu0.5)2SiO5 crystal

Peixiong Zhang, Xingbin Huang, Rui Wang, Zhen Li, Hao Yin, Siqi Zhu, Zhenqiang Chen, and Yin Hang
Opt. Mater. Express 8(3) 668-675 (2018)

Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 2.7μm emission in PbF2 crystal

Yuhao Wang, Peixiong Zhang, Xiao Li, Yin Hang, Shanming Li, Siqi Zhu, Hao Yin, Zhen Li, Zhenqiang Chen, Shibo Dai, and Yi Zheng
Opt. Mater. Express 9(1) 13-25 (2019)

Effects of Zr4+ co-doping on the spectroscopic properties and yellow light emissions of Dy3+ in LiNbO3 single crystals

S. W. Long, D. C. Ma, Y. Z. Zhu, S. P. Lin, and B. Wang
Opt. Mater. Express 6(10) 3354-3365 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2-W average power,” Opt. Lett. 24, 1490–1492 (1999).
    [Crossref]
  2. Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27, 397–399 (2003).
    [Crossref]
  3. A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
    [Crossref]
  4. E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
    [Crossref] [PubMed]
  5. F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
    [Crossref]
  6. A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).
  7. J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
    [Crossref]
  8. W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
    [Crossref]
  9. S. R. Bowman, S. O. Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Express 20, 12906–12911 (2012).
    [Crossref] [PubMed]
  10. G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
    [Crossref] [PubMed]
  11. P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
    [Crossref]
  12. D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
    [Crossref]
  13. L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
    [Crossref]
  14. P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
    [Crossref]
  15. C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
    [Crossref]
  16. V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
    [Crossref] [PubMed]
  17. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  18. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  19. C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
    [Crossref]
  20. M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
    [Crossref]
  21. S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
    [Crossref]
  22. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
    [Crossref]
  23. X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
    [Crossref]
  24. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
    [Crossref]

2017 (1)

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

2016 (3)

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

2014 (1)

2012 (2)

S. R. Bowman, S. O. Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Express 20, 12906–12911 (2012).
[Crossref] [PubMed]

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

2011 (1)

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

2010 (4)

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

2009 (2)

E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
[Crossref] [PubMed]

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

2007 (1)

L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
[Crossref]

2005 (1)

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

2004 (1)

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

2003 (1)

2000 (1)

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

1999 (1)

1983 (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

1962 (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Arakcheeva, A.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

Bagayev, S.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Beauzamy, L.

L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
[Crossref]

Belletti, A.

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Bigotta, S.

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

Bolognesi, G.

Bovero, E.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Bowman, S. R.

Brik, M. G.

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

Calonico, D.

Cavalli, E.

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Chen, Y. F.

Chen, Y. J.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Condon, N. J.

Connor, S. O.

Costanzo, G.A.

Danailov, M.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Demidovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Di, J.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Dominiak-Dzik, G.

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

Dominiak-Dzik, G. G.

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

Enculescu, M.

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

Gheorghe, C.

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

Gong, X. H.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Grabtchikov, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Granados, E.

E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
[Crossref] [PubMed]

Gredin, P.

L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
[Crossref]

Haro-Gonzalez, P.

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

Hommerich, U.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Hu, Z.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Huang, J. H.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Huang, Y. D.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Huber, G.

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

Ikesue, A.

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

Ishii, T.

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

Ivanova, S. E.

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

Jorgensen, C. K.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kaminskii, A.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Kananovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Khasanov, S.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Krankel, C.

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

Kudrenko, E.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Lebedev, O.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Levi, F.

Li, D.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Li, J. F.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

Li, R.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Lin, Y. F.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Lisiecki, R.

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

Luo, Z. D.

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

Lupei, A.

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

Majid, A.

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

Martin, I. R.

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

Martin, L. L.

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

Marzahl, D.

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Marzahl, D. T.

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

Metz, P. W.

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

Moglia, F.

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Moine, B.

L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
[Crossref]

Morozov, V.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Orlovich, V.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Parisi, D.

G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Pask, H. M.

Pask, H.M.

E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
[Crossref] [PubMed]

Pavlyulk, A.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Piper, J. A.

Raskina, M.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Razumova, I. K.

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

Redkin, B.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Reisfeld, R.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Ryba-Romanowski, W.

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

Sai, Q.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Seo, J. T.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Sinitsyn, V.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Solarz, P.

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

Spence, D.J.

E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
[Crossref] [PubMed]

Strze, A.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Su, L.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Tang, H.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Temple, D.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Tendeloo, G. V.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

Tkachuk, A. M.

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

Toncelli, A.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Tonelli, M.

G. Bolognesi, D. Parisi, D. Calonico, G.A. Costanzo, F. Levi, P. W. Metz, C. Krankel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy, Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Tsai, S. W.

Tu, C. Y.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

Ueda, K.

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Wang, Q.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Wang, Y.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

Xu, J.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Xu, X.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Yang, F. G.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

Yang, Q.

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

You, Z. Y.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

Zhu, Z. J.

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

IEEE J. Quantum Elect. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

Inorg Chem. (1)

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. V. Tendeloo, “Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties,” Inorg Chem. 51, 5313–5324 (2012).
[Crossref] [PubMed]

J. Alloy. Compd. (2)

J. H. Huang, Y. F. Lin, X. H. Gong, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal,” J. Alloy. Compd. 664, 266–271 (2016).
[Crossref]

M. G. Brik, T. Ishii, A. M. Tkachuk, S. E. Ivanova, and I. K. Razumova, “Calculations of the transitions intensities in the optical spectra of Dy3+:LiYF4,” J. Alloy. Compd. 374, 63–68 (2004).
[Crossref]

J. Appl. Phys. (1)

A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, “Spectroscopic characteristics of Dy3+ doped Y3Al5O12 transparent ceramics,” J. Appl. Phys. 110, 083120 (2011).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

J. Less-Common Met. (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (2)

L. Beauzamy, B. Moine, and P. Gredin, “Energy transfers between dysprosium and terbium in YF3,” J. Lumin. 127, 568 (2007).
[Crossref]

S. Bigotta, M. Tonelli, E. Cavalli, and A. Belletti, “Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers,” J. Lumin. 130, 13–17 (2010).
[Crossref]

J. Phys. Condens. Matter. (1)

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belletti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter. 17, 2783 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Kaminskii, U. Hommerich, D. Temple, J. T. Seo, K. Ueda, S. Bagayev, and A. Pavlyulk, “Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping,” Jpn. J. Appl. Phys. 2(39), L554 (2000).

Laser Photonics Rev. (2)

P. W. Metz, D. T. Marzahl, A. Majid, C. Krankel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Krankel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Laser Phys. Lett. (2)

F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, “End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal,” Laser Phys. Lett. 7, 14 (2010).
[Crossref]

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573 (2010).
[Crossref]

Opt. Express (1)

Opt. Express. (1)

E. Granados, H.M. Pask, and D.J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express. 17, 569–574 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (3)

P. Haro-Gonzalez, L. L. Martin, I. R. Martin, G. G. Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584 nm in dysprosium doped lithium niobate crystal,” Opt. Mater. 33, 196–199 (2010).
[Crossref]

W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki, “Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: A comparative study,” Opt. Mater. 31, 1547–1554 (2009).
[Crossref]

X. Xu, Z. Hu, R. Li, D. Li, J. Di, L. Su, Q. Yang, Q. Sai, H. Tang, Q. Wang, A. Strze, and J. Xu, “Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers,” Opt. Mater. 66, 469–473(2017).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simplified energy level diagram of Dy3+ and Tb3+ co-doped system. ET1: energy transfer from Dy3+:4F9/2 to Tb3+:5D4 level; ET2: energy transfer from Dy3+:6H13/2 to Tb3+:7F4 level.
Fig. 2
Fig. 2 Absorption spectrum of Dy3+/Tb3+ co-doped NGM crystal in the range of 400–1800 nm.
Fig. 3
Fig. 3 Yellow emission cross-sections of Dy3+ single-doped and Dy3+/Tb3+ co-doped NGM crystals.
Fig. 4
Fig. 4 Fluorescence decay curves of Dy3+ single-doped and Dy3+/Tb3+ co-doped NGM crystals for the 4F9/2 mainfold.
Fig. 5
Fig. 5 Fluorescence decay curves of Dy3+ single-doped and Dy3+/Tb3+ co-doped NGM crystals for the 6H13/2 mainfold.

Tables (1)

Tables Icon

Table 1 Judd-Ofelt parameters Ω2,4,6, branching ratio β, emission cross sections σ, life-time of 4F9/2 level for Dy3+ ions (τM and τR are the measured and calculated radiative lifetime), and quantum efficiency η of different Dy3+ doped materials.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ e m = A β λ 5 I ( λ ) 8 π c n 2 λ I ( λ ) d λ

Metrics