Abstract

Benefiting from unique electronic and optoelectronic properties, tin selenide nanostructures show great potential for applications in energy storage and photovoltaic devices. A novel nanostructured solid-state optoelectronic device based on inorganic/organic semiconductor heterojunction of the arrays of TiO2/SnSe2 core–shell nanocable structure is constructed. To the best of our knowledge, TiO2/SnSe2 nanocables were synthesized by the ion replacement method for the first time. The structural features and morphology of the nanocables were characterized through Raman spectroscopy and scanning electron microscope (SEM). The absorption property had a significant increase with SnSe2 loading at TiO2 nanorods, indicating that the SnSe2 served as the active absorption layer and TiO2 offered a pathway for electron transport. This work offers a novel, practical and promising method for achieving SnSe2-based devices in the application of optic-electronics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang
Opt. Mater. Express 4(7) 1473-1486 (2014)

Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites

H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen
Opt. Express 15(21) 13832-13837 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
    [Crossref]
  2. F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
    [Crossref]
  3. X. Zhou, N. Zhou, C. Li, H. Y. Song, Q. Zhang, X. Z. Hu, L. Gan, H. Q. Li, J. T. Lu, J. Luo, J. Xiong, and T. Y. Zhai, “Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors,” 2D Mater. 4(2), 025048 (2017).
    [Crossref]
  4. C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
    [Crossref] [PubMed]
  5. M. M. El-Nahass, “Optical properties of tin diselenide films,” J. Mater. Sci. 27(24), 6597–6604 (1992).
    [Crossref]
  6. J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
    [Crossref] [PubMed]
  7. S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
    [Crossref]
  8. C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
    [Crossref]
  9. L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
    [Crossref]
  10. C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
    [Crossref]
  11. X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
    [Crossref] [PubMed]
  12. K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
    [Crossref] [PubMed]
  13. P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
    [Crossref]
  14. Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
    [Crossref]
  15. J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B 94(12), 125443 (2016).
    [Crossref]
  16. Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
    [Crossref]
  17. X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
    [Crossref] [PubMed]
  18. J. H. Bang and P. V. Kamat, “Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe,” Adv. Funct. Mater. 20(12), 1970–1976 (2010).
    [Crossref]
  19. Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
    [Crossref] [PubMed]
  20. Z. A. Akbar, J. H. Oh, W. T. Hadmojo, S. J. Yang, Y. R. Do, and S. Y. Jang, “Improved performance of dye-sensitized solar cells using dual-function TiO2 nanowire photoelectrode,” Opt. Express 23(19), A1280–A1287 (2015).
    [Crossref] [PubMed]
  21. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
    [Crossref]
  22. Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
    [Crossref] [PubMed]
  23. A. Baqaei, A. A. S. Alvani, H. Sameie, R. Salimi, and S. Moosakhani, “The effect of pH on facile synthesis of rutile nanorod titanium dioxide photoanode for solar cells,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.38.
    [Crossref]
  24. J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
    [Crossref]
  25. C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
    [Crossref] [PubMed]
  26. Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
    [Crossref]
  27. G. Samara and P. Peercy, “Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile),” Phys. Rev. B 7(3), 1131–1148 (1973).
    [Crossref]
  28. A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
    [Crossref]
  29. A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
    [Crossref]
  30. J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
    [Crossref]
  31. H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
    [Crossref]
  32. Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
    [Crossref]

2017 (3)

M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
[Crossref]

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
[Crossref] [PubMed]

2016 (3)

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B 94(12), 125443 (2016).
[Crossref]

2015 (3)

Z. A. Akbar, J. H. Oh, W. T. Hadmojo, S. J. Yang, Y. R. Do, and S. Y. Jang, “Improved performance of dye-sensitized solar cells using dual-function TiO2 nanowire photoelectrode,” Opt. Express 23(19), A1280–A1287 (2015).
[Crossref] [PubMed]

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

2014 (5)

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

2013 (4)

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

2012 (4)

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

2011 (1)

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

2010 (1)

J. H. Bang and P. V. Kamat, “Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe,” Adv. Funct. Mater. 20(12), 1970–1976 (2010).
[Crossref]

2004 (1)

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

1992 (1)

M. M. El-Nahass, “Optical properties of tin diselenide films,” J. Mater. Sci. 27(24), 6597–6604 (1992).
[Crossref]

1991 (1)

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
[Crossref]

1977 (1)

A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
[Crossref]

1973 (1)

G. Samara and P. Peercy, “Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile),” Phys. Rev. B 7(3), 1131–1148 (1973).
[Crossref]

1971 (1)

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Akbar, Z. A.

Aminalragia Giamini, S.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Aretouli, K. E.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Bando, Y.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Bang, J. H.

J. H. Bang and P. V. Kamat, “Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe,” Adv. Funct. Mater. 20(12), 1970–1976 (2010).
[Crossref]

Cao, L. Y.

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

Chen, F.

Chen, Y.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Chen, Y. X.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Cheng, C.

Choi, J.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Dai, S.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

de Groot, C. H.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Dimoulas, A.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Do, Y. R.

Dong, N.

Du, K. Z.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Ebrish, M. A.

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

El-Nahass, M. M.

M. M. El-Nahass, “Optical properties of tin diselenide films,” J. Mater. Sci. 27(24), 6597–6604 (1992).
[Crossref]

Fan, P.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Fang, H.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Fang, Z.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Fu, W.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Gan, L.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Golberg, D.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Gonzalez, J. M.

J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B 94(12), 125443 (2016).
[Crossref]

Guo, Y. G.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Gurnani, C.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Hadmojo, W. T.

Hao, S. H.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Hector, A. L.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Herron, N.

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
[Crossref]

Hu, L.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

Huang, L.

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

Huang, R.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Huang, Y. C.

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Jang, S. Y.

Jia, L. D.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Jiao, J.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Jin, C. H.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Jin, J.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Jin, S.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Judek, J.

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

Jung, I. G.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Jura, M.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Kadam, S.

M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
[Crossref]

Kamat, P. V.

J. H. Bang and P. V. Kamat, “Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe,” Adv. Funct. Mater. 20(12), 1970–1976 (2010).
[Crossref]

Kang, S. Z.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Kelaidis, N.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Kim, H. J.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Kim, J. M.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Kim, Y. H.

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Koester, S. J.

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

Kwon, Y. S.

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Lapinska, A.

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

Late, D. J.

M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
[Crossref]

Lee, C. S.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Lee, S. T.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Levason, W.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Li, B.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Li, C.

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

Li, F.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Li, H.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Li, J. F.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Li, L.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Li, Q.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Li, Q. H.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Li, X. Q.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Li, Y.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Li, Z.

Liang, W. Y.

A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
[Crossref]

Lim, J.

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Lin, H.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Ling, C. Y.

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Liu, C.

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Liu, F. C.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Liu, G.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Liu, G. L.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Liu, H.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Liu, Z.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Long, L. Y.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Lu, W. L.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Luo, J.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Luo, X. H.

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

Marquez-Velasco, J.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Meek, P. E.

A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
[Crossref]

Mei, L.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Mei, L. M.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Mu, J.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Nicklow, R. M.

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Ning, L. X.

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Oh, J. H.

Oleynik, I. I.

J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B 94(12), 125443 (2016).
[Crossref]

Olson, E. J.

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

Park, T.

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Pawar, M.

M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
[Crossref]

Peercy, P.

G. Samara and P. Peercy, “Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile),” Phys. Rev. B 7(3), 1131–1148 (1973).
[Crossref]

Psycharis, V.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Qiang, T. T.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Reid, G.

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Samara, G.

G. Samara and P. Peercy, “Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile),” Phys. Rev. B 7(3), 1131–1148 (1973).
[Crossref]

Shen, Z. X.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Smith, A. J.

A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
[Crossref]

Smith, H. G.

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Son, S. U.

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Song, Y. X.

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Su, Y.

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

Sun, L. F.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Taube, A.

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

Tian, W.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Traylor, J. G.

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Tsipas, P.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Tsoutsou, D.

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Wang, D.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Wang, J.

Wang, Q. J.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Wang, S. F.

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Wang, W.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Wang, Y.

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
[Crossref]

Wei, G. D.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Wei, L.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Weng, J.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

Wilkinson, M. K.

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Wong, T. L.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Wu, C.

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Xiang, B.

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

Xie, Y.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Xie, Y. R.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Xu, J.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

Yan, S.

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Yan, S. S.

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Yang, Q. D.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Yang, S. J.

Yang, X.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Yin, Y. X.

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

Yu, D. P.

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

Yu, P.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Yu, X.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

Yu, X. C.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Yu, Y. F.

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

Yun, H. J.

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

Zdrojek, M.

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

Zeng, Q. S.

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

Zhai, T.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Zhang, H. Z.

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

Zhang, Q.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Zhang, R.

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

Zhang, W. J.

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

Zhang, Y.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

Zheng, Z.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Zhong, A.

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

Zhou, X.

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Zhu, J.

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. Aminalragia Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, “Epitaxial 2D SnSe2/ 2D WSe2 van der waals heterostructures,” ACS Appl. Mater. Interfaces 8(35), 23222–23229 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers,” Adv. Funct. Mater. 26(1), 137–145 (2016).
[Crossref]

J. H. Bang and P. V. Kamat, “Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe,” Adv. Funct. Mater. 20(12), 1970–1976 (2010).
[Crossref]

Adv. Mater. (1)

X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater. 27(48), 8035–8041 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Taube, A. Lapinska, J. Judek, and M. Zdrojek, “Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets,” Appl. Phys. Lett. 107(1), 013105 (2015).
[Crossref]

Y. R. Xie, L. Wei, Q. H. Li, G. D. Wei, D. Wang, Y. X. Chen, J. Jiao, S. S. Yan, G. L. Liu, and L. M. Mei, “Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction,” Appl. Phys. Lett. 103(26), 261109 (2013).
[Crossref]

Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, “SnSe2 field-effect transistors with high drive current,” Appl. Phys. Lett. 103(26), 263104 (2013).
[Crossref]

Chem. Commun. (Camb.) (2)

X. Yu, J. Zhu, Y. Zhang, J. Weng, L. Hu, and S. Dai, “SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors,” Chem. Commun. (Camb.) 48(27), 3324–3326 (2012).
[Crossref] [PubMed]

J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries,” Chem. Commun. (Camb.) 47(18), 5241–5243 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, and G. Reid, “Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether Precursors,” Chem. Mater. 24(22), 4442–4449 (2012).
[Crossref]

Chemistryselect (1)

M. Pawar, S. Kadam, and D. J. Late, “High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets,” Chemistryselect 2(14), 4068–4075 (2017).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

S. Z. Kang, L. D. Jia, X. Q. Li, Y. X. Yin, L. Li, Y. G. Guo, and J. Mu, “Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties,” Colloids Surf. A Physicochem. Eng. Asp. 406(14), 1–5 (2012).
[Crossref]

CrystEngComm (1)

Z. Fang, S. H. Hao, L. Y. Long, H. Fang, T. T. Qiang, and Y. X. Song, “The enhanced photoelectrochemical response of SnSe2 nanosheets,” CrystEngComm 16(12), 2404–2410 (2014).
[Crossref]

Energy Environ. Sci. (1)

Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, and T. Park, “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite,” Energy Environ. Sci. 7(4), 1454–1460 (2014).
[Crossref]

J. Mater. Chem. (1)

J. Xu, X. Yang, Q. D. Yang, T. L. Wong, S. T. Lee, W. J. Zhang, and C. S. Lee, “Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage,” J. Mater. Chem. 22(26), 13374–13379 (2012).
[Crossref]

J. Mater. Sci. (2)

F. Li, Z. Zheng, Y. Li, W. Wang, J. F. Li, B. Li, A. Zhong, J. Luo, and P. Fan, “Ag-doped SnSe2 as a promising mid-temperature thermoelectric material,” J. Mater. Sci. 52(17), 10506–10516 (2017).
[Crossref]

M. M. El-Nahass, “Optical properties of tin diselenide films,” J. Mater. Sci. 27(24), 6597–6604 (1992).
[Crossref]

J. Phys. C Solid State Phys. (1)

A. J. Smith, P. E. Meek, and W. Y. Liang, “Raman-scattering studies of SnS2 and SnSe2,” J. Phys. C Solid State Phys. 10(8), 1323–1333 (1977).
[Crossref]

J. Phys. Chem. (1)

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
[Crossref]

J. Phys. Chem. B (1)

H. Z. Zhang, X. H. Luo, J. Xu, B. Xiang, and D. P. Yu, “Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays,” J. Phys. Chem. B 108(39), 14866–14869 (2004).
[Crossref]

J. Phys. Chem. C (2)

L. Huang, Y. F. Yu, C. Li, and L. Y. Cao, “Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2,” J. Phys. Chem. C 117(12), 6469–6475 (2013).
[Crossref]

C. Y. Ling, Y. C. Huang, H. Liu, S. F. Wang, Z. Fang, and L. X. Ning, “Mechanical properties, electronic structures, and potential applications in lithium ion batteries: a first-principles study toward SnSe2 nanotubes,” J. Phys. Chem. C 118(48), 28291–28298 (2014).
[Crossref]

Nanoscale (1)

Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, and L. Mei, “A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale 6(15), 9116–9121 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, and J. Jiao, “Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications,” Nanoscale Res. Lett. 8(1), 89 (2013).
[Crossref] [PubMed]

C. Wu, L. Wei, Y. Li, C. Liu, J. Jiao, Y. Chen, and L. Mei, “ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells,” Nanoscale Res. Lett. 9(1), 112 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (3)

J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B 94(12), 125443 (2016).
[Crossref]

G. Samara and P. Peercy, “Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile),” Phys. Rev. B 7(3), 1131–1148 (1973).
[Crossref]

J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B 3(10), 3457–3472 (1971).
[Crossref]

Other (2)

A. Baqaei, A. A. S. Alvani, H. Sameie, R. Salimi, and S. Moosakhani, “The effect of pH on facile synthesis of rutile nanorod titanium dioxide photoanode for solar cells,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.38.
[Crossref]

X. Zhou, N. Zhou, C. Li, H. Y. Song, Q. Zhang, X. Z. Hu, L. Gan, H. Q. Li, J. T. Lu, J. Luo, J. Xiong, and T. Y. Zhai, “Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors,” 2D Mater. 4(2), 025048 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of (a) bare TiO2 nanorod arrays on FTO and (b) SnSe2-TiO2 nanostructure on FTO. Schematic device structures of (c) the TiO2 nanorod arrays/spiro-MeOTAD inorganic/organic heterojunction and (d) the arrays of TiO2/SnSe2 core–shell nanocables /spiro-MeOTAD inorganic/organic heterojunction.
Fig. 2
Fig. 2 SEM images of TiO2 nanorod arrays (a) grown on the FTO substrates,(b) a magnified part of the TiO2/SnSe2 core-shell nanocables on the FTO glass substrate. TEM images of the TiO2/SnSe2 core-shell nanocable (c) showing a cabled structure. (d) High-resolution TEM image showing the crystal and amorphous nature of the core and the sheath, respectively.
Fig. 3
Fig. 3 The schematic diagram of the Raman spectra measurement (a); The schematic of in-and out-plane Raman modes of SnSe2 (b) and TiO2 (c); room-temperature Raman spectra of the arrays of TiO2/SnSe2 core–shell nanocables (d).
Fig. 4
Fig. 4 (a) UV-vis transmittance spectra and (b) (αhv)2-hv spectra of the arrays of the TiO2/SnSe2 core–shell nanocables and the TiO2 nanorod arrays.
Fig. 5
Fig. 5 Density–voltage (J–V) characteristics of the optoelectronic device of TiO2 nanorod arrays (a) and TiO2/SnSe2 core–shell nanocables (b); (c)Schematic energy band diagram and the electron-transfer processes of the arrays of TiO2/SnSe2 core–shell nanocables /spiro-MeOTAD heterojunction.

Metrics