Abstract

We show how extrinsic chirality, i.e. the optical activity of achiral media exhibited at oblique light incidence, can be achieved in plasmonic nanorings by symmetry breaking. We demonstrate that even a small, 5% offset of an inner hole of a 190 nm gold ring results in a measurable circular dichroism signal in the near-infrared region. By using computer simulations, we show that optical activity arises upon excitation of a symmetric dipolar localized surface plasmon resonance mode due to the appearance of co-aligned electric and magnetic dipole moments.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials

Guozhou Li, Qiang Li, Lizhen Yang, and Lijun Wu
Opt. Lett. 41(13) 2911-2914 (2016)

Second harmonic circular dichroism by self-assembled metasurfaces [Invited]

Mario Bertolotti, Alessandro Belardini, Alessio Benedetti, and Concita Sibilia
J. Opt. Soc. Am. B 32(7) 1287-1293 (2015)

Chiroptical activity in colloidal quantum dots coated with achiral ligands

Dzmitry Melnikau, Diana Savateeva, Nikolai Gaponik, Alexander O. Govorov, and Yury P. Rakovich
Opt. Express 24(2) A65-A73 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Lenz, “Malformations caused by drugs in pregnancy,” Am. J. Dis. Child. 112, 99–106 (1966).
    [PubMed]
  2. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
    [Crossref]
  3. A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
    [Crossref] [PubMed]
  4. H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013).
    [Crossref]
  5. W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
    [Crossref] [PubMed]
  6. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
    [Crossref] [PubMed]
  7. M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
    [Crossref] [PubMed]
  8. A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
    [Crossref] [PubMed]
  9. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
    [Crossref] [PubMed]
  10. M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
    [Crossref] [PubMed]
  11. M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
    [Crossref] [PubMed]
  12. E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” App. Phys. Lett. 108, 241905 (2016).
    [Crossref]
  13. I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
    [Crossref] [PubMed]
  14. L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
    [Crossref] [PubMed]
  15. X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
    [Crossref]
  16. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
    [Crossref] [PubMed]
  17. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
    [Crossref]
  18. C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
    [Crossref]
  19. X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
    [Crossref] [PubMed]
  20. L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
    [Crossref] [PubMed]
  21. V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013).
    [Crossref] [PubMed]
  22. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
    [Crossref]
  23. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  24. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref] [PubMed]

2017 (2)

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

2016 (3)

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” App. Phys. Lett. 108, 241905 (2016).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

2015 (1)

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

2014 (1)

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

2013 (5)

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013).
[Crossref]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

2012 (6)

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

2010 (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

2009 (1)

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

2003 (1)

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1966 (1)

W. Lenz, “Malformations caused by drugs in pregnancy,” Am. J. Dis. Child. 112, 99–106 (1966).
[PubMed]

Arango, F. B.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

Bai, P.

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Ben-Moshe, A.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Bochenkov, V. E.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013).
[Crossref] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Chang, W. S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Chen, G.

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cui, T. J.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

Ding, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

Duan, X.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

Fan, Z. Y.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Fang, L.

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Fang, Y.

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Feng, C.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Gao, P.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Giessen, H.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Gold, J.

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

Govorov, A. O.

H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Guo, Y.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Hanarp, P.

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Hentschel, M.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Hogele, A.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Hu, L.

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Huang, Y.

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Jiang, W. X.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

Jiao, J.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Kasemo, B.

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Koenderink, A. F.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

Kotov, N. A.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Kuang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Lee, S.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Lenz, W.

W. Lenz, “Malformations caused by drugs in pregnancy,” Am. J. Dis. Child. 112, 99–106 (1966).
[PubMed]

Li, E. P.

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Li, L.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Li, X.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Link, S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Liu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

Liu, Y.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Lu, X.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Luo, X.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Ma, H. F.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

Ma, W.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Ma, X.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Maoz, B. M.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Markovich, G.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Ni, W.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Plum, E.

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” App. Phys. Lett. 108, 241905 (2016).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Pu, M.

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Schaferling, M.

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Schäferling, M.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Sersic, I.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

Shi, J. H.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Sun, M.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Sutherland, D. S.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013).
[Crossref] [PubMed]

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

Tian, X.

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

van de Haar, M. A.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

Wang, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

Wang, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Wang, Z. B.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Wei, H.

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Wu, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Wu, L.

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Xu, C.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

Xu, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Zhan, L.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013).
[Crossref]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Zhao, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Zhao, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Zhu, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Zhu, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

Zhu, Z.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

ACS Nano (1)

M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012).
[Crossref] [PubMed]

Am. J. Dis. Child. (1)

W. Lenz, “Malformations caused by drugs in pregnancy,” Am. J. Dis. Child. 112, 99–106 (1966).
[PubMed]

App. Phys. Lett. (1)

E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” App. Phys. Lett. 108, 241905 (2016).
[Crossref]

Chem. Soc. Rev. (1)

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Coll. Surf. A (1)

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23–36 (2003).
[Crossref]

J. Appl. Phys. (1)

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
[Crossref]

Nano Lett. (2)

M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref] [PubMed]

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013).
[Crossref] [PubMed]

Nanomaterials (1)

X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017).
[Crossref]

Nanoscale (2)

L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016).
[Crossref] [PubMed]

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Nature Nanotech. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010).
[Crossref]

Opt. Commun. (1)

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012).
[Crossref]

Phys. Rev. B (2)

H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref] [PubMed]

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015).
[Crossref] [PubMed]

Science Advances (1)

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, 1602735 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Non-concentric nanorings: A) fabrication using In-Situ Resist Colloidal Lithography: I) deposition of Ti adhesion layer, II) deposition of silica resist layer, III) deposition of gold, IV) asymmetric ring structure after removal of particles and top gold layer (top view and cross-section); B) scanning electron microscopy image of NCRs on Si substrate.
Fig. 2
Fig. 2 Non-concentric ring model: A) construction schematics; B) top view and cross-sections of the geometry used in FDTD simulations
Fig. 3
Fig. 3 Spectral properties of plasmonic NCRs: experiment (left column) and simulation (right column). (A) Extinction (1-T) spectra obtained in non-polarized light. The region used to analyze the circular dichroism is marked with light-blue color. (B) Extinction difference between right- and left-handed circularly polarized light (Δ=AR-AL) obtained with the sample tilted across the axis parallel to the symmetry axis. The orientations for positive, negative and no tilt angle are shown.
Fig. 4
Fig. 4 Low-energy symmetric dipole LSPR mode of gold NCR: A) enhanced local electric field ( | E 2 | / | E 0 2 | ), B) snapshot of electric currents leading to the net magnetic moment M, C) calculated average magnetic field vector components vs phase (with corresponding instant charge distributions); D) simulated charge plots and schematics of the system upon positive (left), zero (center), and negative (right) angle of incidence, showing the appearance of the non-zero projections of magnetic (m, red arrow) and electric (d, green arrow) moments on the plane normal to propagation vector k; E) Appearance of the orthogonal component of electric field in transmitted light due to sample tilt. The inset shows the schematics of the model.

Metrics