Abstract

We demonstrate a Fabry-Perot fiber cavity for strain measurement with highly improved sensitivity. The cavity is fabricated by the fusion splicing of two etched single-mode fibers with a core offset in the X axis or both X and Y axes. It is found that the strain sensitivity can be increased from 2.39 to 7.75pm/με by adopting offset splicing. Such a Fabry-Perot cavity device is compact in size, simple in structure, easy in fabrication and of low cost, and has high potential in strain sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu
Appl. Opt. 51(8) 1033-1036 (2012)

Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber

Marta S. Ferreira, Jörg Bierlich, Jens Kobelke, Kay Schuster, José L. Santos, and Orlando Frazão
Opt. Express 20(20) 21946-21952 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  2. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  3. Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fber cavity for ultra-sensitive strain measurement,” Sci. Rep.6, 38390 (2016).
  4. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  5. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  6. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
    [Crossref] [PubMed]
  7. J. Harris, P. Lu, H. Larocque, Y. Xu, L. Chen, and X. Bao, “Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation,” Opt. Express 21(8), 9996–10009 (2013).
    [Crossref] [PubMed]
  8. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [Crossref] [PubMed]
  9. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  10. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
    [Crossref] [PubMed]
  11. C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
    [Crossref]
  12. C. S. Monteiro, J. Kobelke, K. Schuster, J. Bierlich, and O. Frazão, “Fabry-Perot sensor based on two coupled microspheres for strain measurement,” in 25th Optical Fiber Sensors Conference (2017), pp. 1–4.
  13. M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
    [Crossref] [PubMed]
  14. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
    [Crossref] [PubMed]

2015 (1)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

2014 (2)

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (7)

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett. 37(5), 890–892 (2012).
[Crossref] [PubMed]

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

2007 (1)

Araujo, L.

Bao, X.

Bierlich, J.

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

C. S. Monteiro, J. Kobelke, K. Schuster, J. Bierlich, and O. Frazão, “Fabry-Perot sensor based on two coupled microspheres for strain measurement,” in 25th Optical Fiber Sensors Conference (2017), pp. 1–4.

Bouwmans, G.

Cao, Z. G.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Chen, L.

Chen, W. P.

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fber cavity for ultra-sensitive strain measurement,” Sci. Rep.6, 38390 (2016).

Cheng, G.-H.

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Dai, J. Y.

Deng, M.

Duan, D. W.

Duan, D.-W.

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Favero, F. C.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Harris, J.

He, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Ho, H. L.

Hou, Y. S.

Hu, T. Y.

Jin, W.

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kobelke, J.

Larocque, H.

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Li, Z.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liao, C.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liao, C. R.

Liu, S.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fber cavity for ultra-sensitive strain measurement,” Sci. Rep.6, 38390 (2016).

Lu, L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Lu, P.

Ma, J.

Monteiro, C. S.

C. S. Monteiro, J. Kobelke, K. Schuster, J. Bierlich, and O. Frazão, “Fabry-Perot sensor based on two coupled microspheres for strain measurement,” in 25th Optical Fiber Sensors Conference (2017), pp. 1–4.

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Pruneri, V.

Qu, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Rao, Y. J.

Rao, Y.-J.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Santos, J. L.

Schuster, K.

Shui, T.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Sun, B.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Tang, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Villatoro, J.

Wang, D. N.

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Wang, J.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Wang, Q.

Wang, R.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Wang, Y.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Xu, Y.

Yang, K.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Yang, X.-C.

Yin, C. C.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Yin, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Yu, B. L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Zhang, Z.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhen, S. L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Zhong, X.

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhu, T.

Appl. Opt. (1)

IEEE Photonics J. (1)

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 1–9 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Sci. Rep. (1)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Other (2)

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fber cavity for ultra-sensitive strain measurement,” Sci. Rep.6, 38390 (2016).

C. S. Monteiro, J. Kobelke, K. Schuster, J. Bierlich, and O. Frazão, “Fabry-Perot sensor based on two coupled microspheres for strain measurement,” in 25th Optical Fiber Sensors Conference (2017), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagrams of fabrication process of optical fiber FP cavity with core offset positioning the etched SMFs; (b) creating an offset; (c) forming an inner air FP cavity.
Fig. 2
Fig. 2 Core offset introduced on (a) only X axis; (b) both X and Y axes.
Fig. 3
Fig. 3 Operation principle of the fiber FP cavity device.
Fig. 4
Fig. 4 Schematic diagram of experimental setup.
Fig. 5
Fig. 5 The reflection spectrum evolution with strain, and the dip wavelength shift versus strain for the device sample without core offset; the inset is the microscope images of the sample without core offset.
Fig. 6
Fig. 6 The reflection spectrum evolution with strain and dip wavelength shift versus strain of the device samples with core offset of (a) 1.6μm; (b) 2.1μm; (c) 3.0μm; (d) 3.8μm; and (e) 4.1μm, in X axis; the insets are the microscope images of the corresponding samples.
Fig. 7
Fig. 7 The reflection spectrum evolution with strain and dip wavelength shift versus strain of three device samples with core offsets on both X and Y axes (a) (9.5μm, 10.2μm); (b) (11.2μm, 12.8μm); (c) (12.2μm, 14.1μm); (d) (13.8μm, 15.1μm); and (e) (15.8, 17.1); the insets are the microscope images of the corresponding device samples.
Fig. 8
Fig. 8 The output dip wavelength versus temperature for device sample of (a) without offset of (b) single direction offset of ~25.6μm.

Tables (2)

Tables Icon

Table 1 The parameters of the device samples with offset in X axis

Tables Icon

Table 2 The parameters of the device samples with offset in both X and Y axes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cosφ
φ= 4πnL λ + φ 0
λ dip = 4nL 2m+1
Δ λ dip = 4nΔL 2m+1

Metrics