Abstract

The objective of this paper is to review the characterisation methods and procedures used to laser switch phase change materials, and then assess their applicability for characterising phase change materials for active photonics devices. Specifically we characterise the performance of our pump-probe laser system and compare it with other ‘static’ and ‘dynamic’ testers. Our pump-probe system was developed to measure the phase transformation kinetics of chalcogenide films by simultaneously measuring the transmission and reflection of a probe laser with a temporal resolution of 1 ns. We also use the system to measure the second order nonlinear refractive index of chalcogenide thin films. Laser switching of chalcogenides are efficient methods to screen new materials but the switching time seems to have a strong dependence on the measurement method and procedure. Therefore in this article we recommend bespoke methods and procedures for assessing the performance of new chalcogenide compositions for specific photonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of crystallization and amorphization dynamics of phase-change thin films by subnanosecond laser pulses

Khanh Kieu, Kenji Narumi, and Masud Mansuripur
Appl. Opt. 45(30) 7826-7831 (2006)

All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials

E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)

Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge2Sb2Te5-Ge prism structure

Joshua Hendrickson, Richard Soref, Julian Sweet, and Arka Majumdar
Opt. Express 23(1) 72-85 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Bourzac, “Has intel created a universal memory technology?[news],” IEEE Spectrum 54, 9–10 (2017).
  2. K. Greene, “A new memory company: Intel and stmicroelectronics have formed a joint venture that plans to commercialize phase-change memory,” https://www.technologyreview.com (2008).
  3. J. Hruska, “IBM researchers announce major breakthrough in phase change memory,” https://www.extremetech.com . (2016).
  4. J. Hruska, “Phase change memory can operate thousands of times faster than current RAM,” https://www.extremetech.com . (2016).
  5. A. Sebastian, “UC San Diego builds phase-change solid-state drive that’s 2 to 7 times faster than NAND,” https://www.extremetech.com . (2011).
  6. J. Hruska, “IBM demonstrates next-gen phase-change memory that’s up to 275 times faster than your SSD,” https://www.extremetech.com . (2014).
  7. M. Yam, “Intel to sample phase change memory this year,” https://www.dailytech.com . (2007).
  8. M. LaPedus, “Samsung to ship MCP with phase-change,” https://www.eetimes.com . (2010).
  9. J. Rice, “Micron announces availability of phase change memory for mobile devices: First PCM solution in the world in volume production,” https://www.micron.com . (2012).
  10. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
    [Crossref] [PubMed]
  11. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
    [Crossref] [PubMed]
  12. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.
  13. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
    [Crossref] [PubMed]
  14. L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
    [Crossref] [PubMed]
  15. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref] [PubMed]
  16. M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
    [Crossref]
  17. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
    [Crossref]
  18. F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
    [Crossref]
  19. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  20. W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
    [Crossref]
  21. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
    [Crossref] [PubMed]
  22. S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
    [Crossref]
  23. R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).
  24. R. E. Simpson, “Chalcogenide thin film materials for next generation data stroage,” Ph.D. thesis, University of Southampton, UK (2008).
  25. M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
    [Crossref]
  26. M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
    [Crossref]
  27. M. Salinga, “Phase change materials for non-volatile electronic memories,” Ph.D. thesis, RWTH Aachen University, Germany (2008).
  28. R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
    [Crossref]
  29. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
    [Crossref]
  30. M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
    [Crossref]
  31. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
    [Crossref]
  32. J. Wei, Nonlinear Super-resolution Nano-optics and Applications (Springer, 2015).
  33. H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic gaussian beam,” Appl. Optics 24, 686–690 (1985).
    [Crossref]
  34. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
    [Crossref]
  35. F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
    [Crossref]
  36. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
    [Crossref]
  37. C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
    [Crossref]
  38. E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
    [Crossref]
  39. H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
    [Crossref]
  40. M. Avrami, “Kinetics of phase change. i general theory,” J. Chem. Phys. 7, 1103–1112 (1939).
    [Crossref]
  41. M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
    [Crossref] [PubMed]
  42. T. J. Terrell, Introduction to Digital Filters (Springer, 1988).
    [Crossref]
  43. L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
    [Crossref]
  44. M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
    [Crossref]
  45. M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
    [Crossref]
  46. J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).
  47. T. Suzuki, “Optical disk tester using 680 nm laser head,” in “IEEE IMTC P.”, (IEEE, 1994), pp. 1515–1516.
  48. R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
    [Crossref]
  49. S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).
  50. M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
    [Crossref]
  51. B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
    [Crossref] [PubMed]
  52. A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
    [Crossref]
  53. P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
    [Crossref]
  54. J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
    [Crossref]
  55. J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
    [Crossref]
  56. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
    [Crossref] [PubMed]
  57. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
    [Crossref]
  58. J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
    [Crossref]
  59. Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
    [Crossref]
  60. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
    [Crossref]
  61. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref] [PubMed]
  62. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
    [Crossref]
  63. M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
    [Crossref]
  64. J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
    [Crossref]

2017 (2)

K. Bourzac, “Has intel created a universal memory technology?[news],” IEEE Spectrum 54, 9–10 (2017).

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

2016 (4)

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

2015 (5)

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

2014 (3)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

2013 (4)

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
[Crossref]

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

2012 (3)

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref] [PubMed]

2011 (2)

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

2010 (2)

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

2009 (5)

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

2008 (3)

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

2007 (2)

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

2006 (1)

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

2004 (2)

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref] [PubMed]

2002 (1)

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

2001 (2)

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

2000 (1)

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

1999 (1)

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

1998 (1)

J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
[Crossref]

1985 (2)

H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic gaussian beam,” Appl. Optics 24, 686–690 (1985).
[Crossref]

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

1939 (1)

M. Avrami, “Kinetics of phase change. i general theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[Crossref]

Abelson, J. R.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Altug, H.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

Analytis, J. G.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Atoda, N.

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
[Crossref]

Austgen, M.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Avrami, M.

M. Avrami, “Kinetics of phase change. i general theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[Crossref]

Aziz, M. M.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Baba, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Bakan, G.

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Bansil, A.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Bao, Q.

Benke, J.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

Benvenuti, A.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Bertoni, R.

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Bez, R.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Bhaskaran, H.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Bilger, H. R.

H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic gaussian beam,” Appl. Optics 24, 686–690 (1985).
[Crossref]

Bishop, S. G.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Bletscher, W.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Bogle, S. N.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Bornafft, M.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

Bourzac, K.

K. Bourzac, “Has intel created a universal memory technology?[news],” IEEE Spectrum 54, 9–10 (2017).

Buchel, D.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Burr, G. W.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

Caldwell, M. A.

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

Cao, T.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
[Crossref]

Carria, E.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

Carrilero, A.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

Cava, R. J.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Cazzaniga, F.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Cetin, A. E.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

Chen, M.

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

Chen, Y.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Cheng, H.-Y.

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

Chung, K.-M.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Cryan, M. J.

Darmawikarta, K.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

de Abajo, F. J. G.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

de Araújo, M. A.

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

de Lima, E.

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

de Oliveira, P. C.

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

Dilcher, E.

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

Dirisaglik, F.

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Dong, W.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Dou, Z.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Ernstorfer, R.

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Erwin, J. K.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Fang, X.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Faraclas, A.

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Fisher, I. R.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Fons, P.

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

Fons, P. J.

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

Fuji, H.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

Fukaya, T.

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Fukuda, H.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Ganeev, R. A.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Gerber, U.

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Godbout, N.

Gokirmak, A.

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

González-Hernández, J.

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

Grabowski, B.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

Grauer, D.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Guerin, S.

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

Gupta, A.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Habib, T.

H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic gaussian beam,” Appl. Optics 24, 686–690 (1985).
[Crossref]

Hasan, M. Z.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Hayden, B.

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

Hewak, D.

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

Hickel, T.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

Hitzbleck, M.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Hor, Y. S.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Hsieh, D.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Hudgens, S.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Ichihara, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Jipson, V.

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

Jost, P.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

Kaldenbach, A.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

Kalikka, J.

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

Kawamura, N.

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref] [PubMed]

Khulbe, P.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

ki Cheong, B.

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Kikukawa, T.

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Kim, J.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Kim, K.-B.

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Kirchmann, P. S.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Kockaert, P.

Kolobov, A.

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

Krbal, M.

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

Krebs, D.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Kumagai, M.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Kuroda, H.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Kuwahara, M.

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

Kwon, M.-H.

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Lacaita, A. L.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Lee, B.-S.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

Li, J.

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

Lin, H.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Lindenberg, A. M.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Liu, J.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Mansuripur, M.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Marrello, V.

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

Martens, H.

H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
[Crossref]

Massar, S.

Mayer, J.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

Men, L.

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Mendes, S. B.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Mendoza-Galván, A.

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

Merkelbach, P.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

Miller, T. A.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Mkhitaryan, V.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

Morales-Sanchez, E.

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

Moroni, M.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Munoz, B.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Nakano, T.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
[Crossref]

Nittala, L. N.

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

Ohsawa, H.

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

Osmond, J.

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Pal, A.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Pellizzer, F.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Pereira, D. P.

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

Pernice, W. H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Pernice, W. H. P.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Ping, L. K.

Pirovano, A.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

Prangsma, J.

H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
[Crossref]

Prokhorov, E.

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

Pruneri, V.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Purdy, G.

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

Qian, D.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Qiu, Y.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Quidant, R.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Raoux, S.

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Renger, J.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Rettner, C. T.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

Rios, C.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Rubin, K.

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

Rude, M.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Rudé, M.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Sadeghi, K.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Salinga, M.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

M. Salinga, “Phase change materials for non-volatile electronic memories,” Ph.D. thesis, RWTH Aachen University, Germany (2008).

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Sato, A.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

Scherer, T.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Schlich, F. F.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Schlockermann, C.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

Shah, P.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Shelby, R.

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Shelby, R. M.

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

Shen, Z.-X.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Shima, T.

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Siegrist, T.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

Silva, H.

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Silva, R.

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

Simpson, R.

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

Simpson, R. E.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

R. E. Simpson, “Chalcogenide thin film materials for next generation data stroage,” Ph.D. thesis, University of Southampton, UK (2008).

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

Sobota, J. A.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Song, Y.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Spolenak, R.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Stegmaier, M.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Suzuki, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

Suzuki, T.

T. Suzuki, “Optical disk tester using 680 nm laser head,” in “IEEE IMTC P.”, (IEEE, 1994), pp. 1515–1516.

Tachibana, A.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Takagaki, M.

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

Tanida, H.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Terrell, T. J.

T. J. Terrell, Introduction to Digital Filters (Springer, 1988).
[Crossref]

Tian, J.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Tominaga, J.

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
[Crossref]

Uruga, T.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

van der Tol, J. J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Varesi, E.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Virally, S.

Vlutters, R.

H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
[Crossref]

Volker, H.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

Waldecker, L.

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Wall, S.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

Wang, B.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Wang, J.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Wang, L.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, X.

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

Wang, Y.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Wei, C.

Wei, J.

J. Wei, Nonlinear Super-resolution Nano-optics and Applications (Springer, 2015).

Wen, S.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Woda, M.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Wong, H.-S. P.

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

Wray, L.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Wright, C. D.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Wuttig, M.

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

Xia, Y.

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Xun, X.

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

Yamakawa, Y.

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

Yang, J.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Yang, S.

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Yu, H.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Yu, Z.

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zalden, P.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Zhang, H.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref] [PubMed]

Zhang, L.

Zhao, C.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zhou, X.

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

ACS Photonics (2)

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Adv. Opt. Mater. (2)

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Opt. Mater. 4, 1060–1066 (2016).
[Crossref]

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

App. Phys. Lett. (4)

S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, “Crystallization times of Ge–Te phase change materials as a function of composition,” App. Phys. Lett. 95, 071910 (2009).
[Crossref]

M. Chen, K. Rubin, V. Marrello, U. Gerber, and V. Jipson, “Reversibility and stability of tellurium alloys for optical data storage applications,” App. Phys. Lett. 46, 734–736 (1985).
[Crossref]

R. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb–Te alloys,” App. Phys. Lett. 97, 161906 (2010).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” App. Phys. Lett. 103, 141119 (2013).
[Crossref]

Appl. Optics (3)

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Optics 38, 7095–7104 (1999).
[Crossref]

H. R. Bilger and T. Habib, “Knife-edge scanning of an astigmatic gaussian beam,” Appl. Optics 24, 686–690 (1985).
[Crossref]

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Optics 48, 393–396 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M.-H. Kwon, B.-S. Lee, S. N. Bogle, L. N. Nittala, S. G. Bishop, J. R. Abelson, S. Raoux, B. ki Cheong, and K.-B. Kim, “Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy,” Appl. Phys. Lett. 90, 021923 (2007).
[Crossref]

IEEE Spectrum (1)

K. Bourzac, “Has intel created a universal memory technology?[news],” IEEE Spectrum 54, 9–10 (2017).

IEEE T. Nanotechnol. (1)

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The design of rewritable ultrahigh density scanning-probe phase-change memories,” IEEE T. Nanotechnol. 10, 900–912 (2011).
[Crossref]

Int. J. Hi. Spe. Ele. Syst. (1)

F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, and H. Silva, “Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures,” Int. J. Hi. Spe. Ele. Syst. 23, 1450004 (2014).
[Crossref]

Int. Sym. Opt. memory (1)

J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Int. Sym. Opt. memory 40, 3B (2001).

J. Appl. Phys. (4)

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of au, pt, pd, and ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, “On a thermally induced readout mechanism in super-resolution optical disks,” J. Appl. Phys. 100, 043106 (2006).
[Crossref]

E. Morales-Sanchez, E. Prokhorov, A. Mendoza-Galván, and J. González-Hernández, “Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films,” J. Appl. Phys. 91, 697–702 (2002).
[Crossref]

H. Martens, R. Vlutters, and J. Prangsma, “Thickness dependent crystallization speed in thin phase change layers used for optical recording,” J. Appl. Phys. 95, 3977–3983 (2004).
[Crossref]

J. Chem. Phys. (1)

M. Avrami, “Kinetics of phase change. i general theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[Crossref]

J. Phys. Chem. C (1)

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Japan. J. Appl. Phys. (1)

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Japan. J. Appl. Phys. 39, 957 (2000).
[Crossref]

Journal of Non-Crystalline Solids (1)

A. V. Kolobov, P. Fons, M. Krbal, and J. Tominaga, “Athermal component of amorphisation in phase-change alloys and chalcogenide glasses,” Journal of Non-Crystalline Solids 358, 2398–2401 (2012).
[Crossref]

Jpn. J. Appl. Phys. (5)

P. Fons, A. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, M. Takagaki, H. Ohsawa, H. Tanida, and J. Tominaga, “Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5,” Jpn. J. Appl. Phys. 46, 3711 (2007).
[Crossref]

J. Tominaga, T. Nakano, and N. Atoda, “Double optical phase transition of gesbte thin films sandwiched between two sin layers,” Jpn. J. Appl. Phys. 37, 1852–1854 (1998).
[Crossref]

R. E. Simpson, P. J. Fons, A. Kolobov, M. Kuwahara, and J. Tominaga, “Crystallization of bi doped Sb8Te2,” Jpn. J. Appl. Phys. 48, 03A062 (2009).
[Crossref]

L. Men, J. Tominaga, H. Fuji, T. Kikukawa, and N. Atoda, “The effects of metal-doped GeSbTe films on light scattering-modesuper-resolution near-field structure Super-RENS,” Jpn. J. Appl. Phys. 40, 1629–1633 (2001).
[Crossref]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys. 43, L8–L10 (2004).
[Crossref]

Laser Photonics Rev. (1)

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7, 77–83 (2013).
[Crossref]

Nano. Lett. (1)

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano. Lett. 10, 414–419 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Salinga, E. Carria, A. Kaldenbach, M. Bornafft, J. Benke, J. Mayer, and M. Wuttig, “Measurement of crystal growth velocity in a melt-quenched phase-change material,” Nat. Commun. 4, 3371 (2013).
[Crossref] [PubMed]

J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, and R. E. Simpson, “Strain engineered diffusive atomic switching in two-dimensional crystals,” Nat. Commun. 7, 11983 (2016).
[Crossref]

Nat. Mater. (4)

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, “Disorder-induced localization in crystalline phase-change materials,” Nat. Mater. 10, 202–208 (2011).
[Crossref] [PubMed]

L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Nat. Phys. (1)

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009).
[Crossref]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optics express (1)

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Optics express 22, 24055–24061 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 117403 (2012).
[Crossref]

Science (1)

B.-S. Lee, G. W. Burr, R. M. Shelby, S. Raoux, C. T. Rettner, S. N. Bogle, K. Darmawikarta, S. G. Bishop, and J. R. Abelson, “Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid,” Science 326, 980–984 (2009).
[Crossref] [PubMed]

Other (16)

J. Wei, Nonlinear Super-resolution Nano-optics and Applications (Springer, 2015).

S. Raoux, R. Shelby, B. Munoz, M. Hitzbleck, D. Krebs, M. Salinga, M. Woda, M. Austgen, K.-M. Chung, and M. Wuttig, “Crystallization Times of As-deposited and Melt-quenched Amorphous Phase Change Materials,” in “Proc. Europ. Symp. On Phase Change and Ovonic Science,” (2008).

T. Suzuki, “Optical disk tester using 680 nm laser head,” in “IEEE IMTC P.”, (IEEE, 1994), pp. 1515–1516.

T. J. Terrell, Introduction to Digital Filters (Springer, 1988).
[Crossref]

R. E. Simpson, D. Hewak, S. Guerin, B. Hayden, and G. Purdy, High Throughput Synthesis and Screening of Chalcogenide Materials For Data Storage (University of Cambridge, 2005).

R. E. Simpson, “Chalcogenide thin film materials for next generation data stroage,” Ph.D. thesis, University of Southampton, UK (2008).

M. Salinga, “Phase change materials for non-volatile electronic memories,” Ph.D. thesis, RWTH Aachen University, Germany (2008).

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” in “IEDM Tech. Dig.” (2003), pp. 699–702.

K. Greene, “A new memory company: Intel and stmicroelectronics have formed a joint venture that plans to commercialize phase-change memory,” https://www.technologyreview.com (2008).

J. Hruska, “IBM researchers announce major breakthrough in phase change memory,” https://www.extremetech.com . (2016).

J. Hruska, “Phase change memory can operate thousands of times faster than current RAM,” https://www.extremetech.com . (2016).

A. Sebastian, “UC San Diego builds phase-change solid-state drive that’s 2 to 7 times faster than NAND,” https://www.extremetech.com . (2011).

J. Hruska, “IBM demonstrates next-gen phase-change memory that’s up to 275 times faster than your SSD,” https://www.extremetech.com . (2014).

M. Yam, “Intel to sample phase change memory this year,” https://www.dailytech.com . (2007).

M. LaPedus, “Samsung to ship MCP with phase-change,” https://www.eetimes.com . (2010).

J. Rice, “Micron announces availability of phase change memory for mobile devices: First PCM solution in the world in volume production,” https://www.micron.com . (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the dual laser pump-probe static tester. SMF, single mode fiber; BD, beam dump; FP, fiber port; CL, collimation lens; BE, beam expander; M1, M2, silver mirrors; DM, dichroic mirror; MOL1, MOL2, magnifying objective lens; CF1, CF2, bandpass line filters; BS, beam splitter; FL1, FL2, FL3, focusing lens; PD1, PD2, photo detectors; LED, light emitting diode. Mirror M1 is movable and only used for imaging the sample surface. (b) The optical microscope image of crystalline marks on an amorphous Ge2Sb2Te5 sample.
Fig. 2
Fig. 2 Two-dimensional FEA simulation of time dependent temperature of Ge2Sb2Te5 layer for a pulse (dashed) and continuous (solid) probe laser.
Fig. 3
Fig. 3 (a) The change in transmitted signal as a function of time in the crystallisation process of Ge2Sb2Te5. The JMAK fitting (black curve) of the transmitted signal. (b) Distribution of switching time for 250 times laser switching measurements. The gaussian fitting (pink colour) of the switching times.
Fig. 4
Fig. 4 Power-time-transmission image plot of the Ge2Sb2Te5 sample during crystallisation and amorphisation. (a) and (d) shows the experimental raw data. (b), and (e) using of short pass FIR filter to smoothen the raw data and (c) and (f) represents the filtered transmitted data.
Fig. 5
Fig. 5 Power-time-reflection image plot of the Ge2Sb2Te5 in crystallisation process by (a) pre-pulse–post-pulse mode and (b) transient mode measurements.
Fig. 6
Fig. 6 The optical microscope image of a crystalline write marks matrix on the amorphous Ge2Sb2Te5 surface. The red colour represents high reflective (crystalline) state and the blue colour represents the low reflective (amorphous) state.
Fig. 7
Fig. 7 Schematic diagram of the dynamic disc tester.
Fig. 8
Fig. 8 The erasability as a function of disc linear velocity of GeTeSb2Te3 based phase change material alloy. The green colour curve represents the Ge2Sb2Te5 alloy.
Fig. 9
Fig. 9 Normalised change in transmission in a z-scan measurements of Bi2Se3. (a) Open aperture (OA) (b) Ratio between CA and OA.

Tables (2)

Tables Icon

Table 1 Comparison of static testers used by different groups

Tables Icon

Table 2 Comparison between the dynamic and static testers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

. ( κ T ) + Q = ρ c T t
Q ( r , t ) = E t h ( r ) 1 π τ exp [ ( t τ ) 2 ]
E t h ( r ) = P π ω 2 ( 1 R ) α e α d exp [ 2 ( r ω ) 2 ]
T ( x ) = 1 β I 0 L eff 2 3 / 2 ( 1 + x 2 )
T ( x ) = 1 4 x Δ ϕ 0 ( x 2 + 9 ) ( x 2 + 1 ) 2 ( x 2 + 3 ) Δ ψ 0 ( x 2 + 1 ) ( x 2 + 9 )

Metrics