Abstract

In this paper, we numerically investigate the fluorescence decay of Tm-doped tellurite glasses with different dopant concentrations. The aim is to find a set of data that allows the prediction of material performance over a wide range of doping concentrations. Among the available data, a deep investigation of the reverse cross-relaxation process (3F4,3F4,→3H6,3H4) was not yet available. The numerical simulation indicates that the reverse cross-relaxation process parameter can be calculated by fitting the slow decaying 3H4 fluorescence tails emitted when the pump level is almost depopulated. We also show that the floor of the 3H4 decay curve is indeed related to a second exponential constant, half the 3F4 lifetime, kicking in once the 3H4 level depopulates. By properly fitting the whole set of decay curves for all samples, the proposed value for the reverse cross-relaxation process is 0.03 times the cross-relaxation parameter. We also comment on the measurement accuracy and best set-up. Excellent agreement was found between the simulated and experimental data, indicating the validity of the approach. This paper therefore proposes a set of parameters validated by fitting experimental fluorescence decay curves of both the 3H4 and 3F4 levels. To the best of our knowledge, this is the first time a numerical simulation has been able to predict the fluorescence behavior of glasses with doping levels ranging from 0.36 mol% to 10 mol%. We also show that appropriate calculations of the reverse cross-relaxation parameter may have a significant effect on the simulation of laser and amplifier devices.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

5 January 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses

Masaud Taher, Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, and Rolindes Balda
Opt. Express 19(27) 26269-26274 (2011)

Energy transfer processes in Tm3+-doped aluminate glass

Lu Yan, Zhisong Xiao, Fang Zhu, Feng Zhang, and Anping Huang
J. Opt. Soc. Am. B 27(3) 452-457 (2010)

Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández- Navarro, and D. Munoz-Martin
Opt. Express 16(16) 11836-11846 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
    [Crossref]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool,” Lasers Surg. Med. 30(3), 184–190 (2002).
    [Crossref] [PubMed]
  3. J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
    [Crossref]
  4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).
  5. J. T. Dobler, M. Braun, J. Nagel, V. L. Temyanko, T. S. Zaccheo, F. W. Harrison, E. V. Browell, and S. A. Kooi, “Applications of fiber lasers for remote sensing of atmospheric greenhouse gases,” in Proc. SPIE(2013), pp. 86011Q–86011.
  6. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  7. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [Crossref]
  8. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
    [Crossref]
  9. Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
    [Crossref]
  10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient~ 2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [Crossref] [PubMed]
  11. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
    [Crossref]
  12. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  13. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).
  14. M. Taher, H. Gebavi, S. Taccheo, D. Milanese, and R. Balda, “Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses,” Opt. Express 19(27), 26269–26274 (2011).
    [Crossref] [PubMed]
  15. F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
    [Crossref]
  16. D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
    [Crossref]
  17. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
    [Crossref]
  18. T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
    [Crossref]
  19. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [Crossref]
  20. D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  21. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
    [Crossref]
  22. S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
    [Crossref] [PubMed]
  23. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
    [Crossref] [PubMed]
  24. M. M. Broer, D. M. Krol, and D. J. Digiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
    [Crossref] [PubMed]
  25. C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
    [Crossref]
  26. J.-F. Lupi, M. Vermillac, W. Blanc, F. Mady, M. Benabdesselam, B. Dussardier, and D. R. Neuville, “Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 μm: quantitative effect of lanthanum, cerium, and thulium,” Opt. Lett. 41(12), 2771–2774 (2016).
    [Crossref] [PubMed]
  27. D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
    [Crossref]

2016 (1)

2013 (1)

2011 (2)

2010 (2)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

2009 (1)

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

2008 (1)

2007 (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2006 (2)

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
[Crossref]

2004 (2)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

2002 (2)

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool,” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

2001 (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

1999 (1)

1994 (1)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

1993 (1)

1989 (1)

J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[Crossref]

1988 (2)

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

1973 (1)

T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

1964 (1)

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Ainslie, B.

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

Allain, J.

J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[Crossref]

Auzel, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

Balda, R.

M. Taher, H. Gebavi, S. Taccheo, D. Milanese, and R. Balda, “Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses,” Opt. Express 19(27), 26269–26274 (2011).
[Crossref] [PubMed]

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Baldacchini, G.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Baxter, G. W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Benabdesselam, M.

Binks, D.

Blanc, W.

J.-F. Lupi, M. Vermillac, W. Blanc, F. Mady, M. Benabdesselam, B. Dussardier, and D. R. Neuville, “Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 μm: quantitative effect of lanthanum, cerium, and thulium,” Opt. Lett. 41(12), 2771–2774 (2016).
[Crossref] [PubMed]

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

Broer, M. M.

Cadier, B.

Chang, J.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Chaussedent, S.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Collins, S. F.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Cornacchia, F.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Craig, S.

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

De Camargo, A.

D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
[Crossref]

Digiovanni, D. J.

Durrant, T.

Dussardier, B.

J.-F. Lupi, M. Vermillac, W. Blanc, F. Mady, M. Benabdesselam, B. Dussardier, and D. R. Neuville, “Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 μm: quantitative effect of lanthanum, cerium, and thulium,” Opt. Lett. 41(12), 2771–2774 (2016).
[Crossref] [PubMed]

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

Evans, C. A.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

Fagundes-Peters, D.

D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
[Crossref]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

Fernandez, J.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Ferrari, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Ferraris, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

Fiebrandt, J.

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

Galzerano, G.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Gebavi, H.

Gibbs, W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Hanna, D.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Harrison, P.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

Huang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Ikonic, Z.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool,” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
[Crossref]

Jäger, M.

Jauncey, I.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Jetschke, S.

Jha, A.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient~ 2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

King, T. A.

Kirchhof, J.

Komukai, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Krol, D. M.

Kushida, T.

T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

Landais, D.

Laporta, P.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool,” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Le Goffic, O.

Leich, M.

Liu, Z.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Lousteau, J.

Lupi, J.-F.

Mady, F.

Mallinson, S. R.

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

Marano, M.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

McCumber, D.

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mechin, D.

Milanese, D.

Millar, C.

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

Miyajima, Y.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Monerie, M.

J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[Crossref]

Monnom, G.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Monteville, A.

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Neuville, D. R.

Nunes, L. A. O.

D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
[Crossref]

Percival, R.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Perry, I.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Poignant, H.

J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[Crossref]

Richards, B.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient~ 2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Robin, T.

Sani, E.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Schwuchow, A.

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Simpson, D. A.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Smart, R.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Suni, P. J.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Taccheo, S.

Taher, M.

Toncelli, A.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Tonelli, M.

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

Townsend, J. E.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Tregoat, D.

Tropper, A. C.

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

Tsang, Y.

Unger, S.

Vermillac, M.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Wang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Yamamoto, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Yu, G.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Zhang, X.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Appl. Phys. B (2)

F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, “Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho: YLF and Tm-Ho: BaYF: a comparative analysis,” Appl. Phys. B 75(8), 817–822 (2002).
[Crossref]

D. Fagundes-Peters, A. De Camargo, and L. A. O. Nunes, “Excited state absorption and energy transfer losses in thulium doped fluoroindogallate glass,” Appl. Phys. B 85(1), 101–104 (2006).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Electron. Lett. (4)

D. Hanna, I. Jauncey, R. Percival, I. Perry, R. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222 (1988).
[Crossref]

J. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μmin thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[Crossref]

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm m Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

C. Millar, S. R. Mallinson, B. Ainslie, and S. Craig, “Photochromic behaviour of thulium-doped silica optical fibres,” Electron. Lett. 24(10), 590–591 (1988).
[Crossref]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94, 293–297 (2001).
[Crossref]

J. Non-Cryst. Solids (1)

D. A. Simpson, G. W. Baxter, S. F. Collins, W. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Phys. D Appl. Phys. 43(13), 135104 (2010).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

Laser Phys. (1)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool,” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Lightwave Technology, Journalism (1)

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Theoretical Modeling of a~2 μm Tm3+Doped Tellurite Fiber Laser: The Influence of Cross Relaxation,” Lightwave Technology, Journalism 27, 4026–4032 (2009).

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1-3), 201–212 (2004).
[Crossref]

Phys. Rev. (1)

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er 3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

J. T. Dobler, M. Braun, J. Nagel, V. L. Temyanko, T. S. Zaccheo, F. W. Harrison, E. V. Browell, and S. A. Kooi, “Applications of fiber lasers for remote sensing of atmospheric greenhouse gases,” in Proc. SPIE(2013), pp. 86011Q–86011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Energy level scheme of Thulium
Fig. 2
Fig. 2 Normalized Fluorescence decay of 3H4 (a) and 3F4 (b) levels: Experimental (dots) and theoretical fitting (line). The number that identifies the samples (T#) corresponds to the doping level in mol%.
Fig. 3
Fig. 3 Calculated lifetime values for a) 3H4 level, and b) 3F4 level versus Tm concentration, solid line is fitting using Ref [21].
Fig. 4
Fig. 4 Theory (blue line) and Experiment (red dots): Fluorescence decay for 3H4 for samples T1.08 (a). T4 (b), T6 (c) and T7 (d).
Fig. 5
Fig. 5 Simulation of fluorescence decay from level 3H4 for sample T4. Original refers to a' curve using values used in Fig. 2 and Fig. 4: a' is the ratio = 0.03 and I' is pump intensity = 1.3*103 W/cm2.
Fig. 6
Fig. 6 Normalized threshold intensity versus parameter a. The values are normalized with respect to the values for a = 0.03. Calculation were done for sample T4

Tables (1)

Tables Icon

Table 1 List of parameters used in the modeling

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N 4 d t = W 14 N 1 W 14 N 4 N 4 τ 4 P 41 N 4 N 1 + P 22 N 2 2
d N 3 d t = N 3 τ 3 + β 43 N 4 τ 4
d N 2 d t = 2 P 41 N 4 N 1 2 P 22 N 2 2 N 2 τ 2 + β 42 N 4 τ 4 + β 32 N 3 τ 3
d N 1 d t = W 14 N 1 + W 41 N 4 + P 22 N 2 2 P 41 N 4 N 1 + N 2 τ 2 + β 41 N 4 τ 4 + β 31 N 3 τ 3

Metrics