Abstract

We present the fabrication of multimaterial polarization maintaining optical fibers. We exploit the flexibility of the powder-in-tube process for fabricating silica-based optical fibers composed of two rods of glass material on the sides of the core. We demonstrate the capability of this process to use glass material with properties sorely different from the ones of silica for developing high-birefringence optical fiber. This proof-of-concept paves the way for the use of different materials with specific properties for improving the performances of polarization maintaining optical fibers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies

Qiuling Chen, Hui Wang, Qingwei Wang, Qiuping Chen, and Yinlei Hao
Appl. Opt. 54(4) 946-952 (2015)

Wide band single polarization and polarization maintaining fibers using stress rods and air holes

Xin Chen, Ming-Jun Li, Joohyun Koh, and Daniel A. Nolan
Opt. Express 16(16) 12060-12068 (2008)

Polarization-maintaining Yb-doped large-mode-area fully aperiodic large-pitch fibers

Rémi du Jeu, Romain Dauliat, Baptiste Leconte, Marie-Alicia Malleville, Raphaël Jamier, Jörg Bierlich, Anka Schwuchow, Kay Schuster, and Philippe Roy
Appl. Opt. 57(29) 8582-8585 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  2. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  3. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  4. M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
    [Crossref]
  5. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005).
    [Crossref] [PubMed]
  6. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  7. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, “Broadband single-polarization photonic crystal fiber,” Opt. Lett. 30(12), 1446–1448 (2005).
    [Crossref] [PubMed]
  8. O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
    [Crossref] [PubMed]
  9. P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
  10. N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
    [Crossref]
  11. S. C. Rashleigh and M. J. Marrone, “Influence of the fiber diameter on the stress birefringence in high-birefringence fibers,” Opt. Lett. 8(5), 292–294 (1983).
    [Crossref] [PubMed]
  12. M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
    [Crossref]
  13. Y.-C. Huang, C.-N. Liu, Y.-S. Lin, J.-S. Wang, W.-L. Wang, F.-Y. Lo, T.-L. Chou, S.-L. Huang, and W.-H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
    [Crossref] [PubMed]
  14. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
    [Crossref]
  15. J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
    [Crossref] [PubMed]
  16. S. Leparmentier, J.-L. Auguste, G. Humbert, G. Delaizir, and S. Delepine-Lesoille, “Fabrication of optical fibers with palladium metallic particles embedded into the silica cladding,” Opt. Mater. Express 5(11), 2578–2586 (2015).
    [Crossref]
  17. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
    [Crossref]
  18. M. J. Weber, Handbook of optical materials (CRC Press, 2002).
  19. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, “Stress-induced birefringence in large-mode-area micro-structured optical fibers,” Opt. Express 13(10), 3637–3646 (2005).
    [Crossref] [PubMed]
  20. A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
    [Crossref] [PubMed]
  21. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W. T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15(7), 3665–3672 (2007).
    [Crossref] [PubMed]
  22. P. C. Schultz, “Optical Absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57(7), 309–313 (1974).
    [Crossref]
  23. E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22(7), 481–483 (1997).
    [Crossref] [PubMed]
  24. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref] [PubMed]
  25. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
    [Crossref]
  26. V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt. 18(24), 4080–4084 (1979).
    [Crossref] [PubMed]
  27. S. C. Rashleigh and M. J. Marrone, “Temperature dependence of stress birefringence in an elliptically clad fiber,” Opt. Lett. 8(2), 127–129 (1983).
    [Crossref] [PubMed]
  28. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
    [Crossref]

2015 (1)

2014 (1)

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

2011 (1)

2007 (2)

A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W. T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15(7), 3665–3672 (2007).
[Crossref] [PubMed]

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[Crossref] [PubMed]

2005 (4)

2001 (3)

2000 (1)

1997 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1984 (1)

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).

1983 (4)

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

S. C. Rashleigh and M. J. Marrone, “Temperature dependence of stress birefringence in an elliptically clad fiber,” Opt. Lett. 8(2), 127–129 (1983).
[Crossref] [PubMed]

S. C. Rashleigh and M. J. Marrone, “Influence of the fiber diameter on the stress birefringence in high-birefringence fibers,” Opt. Lett. 8(5), 292–294 (1983).
[Crossref] [PubMed]

1981 (1)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

1979 (1)

1974 (1)

P. C. Schultz, “Optical Absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57(7), 309–313 (1974).
[Crossref]

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Arriaga, J.

Auguste, J.-L.

S. Leparmentier, J.-L. Auguste, G. Humbert, G. Delaizir, and S. Delepine-Lesoille, “Fabrication of optical fibers with palladium metallic particles embedded into the silica cladding,” Opt. Mater. Express 5(11), 2578–2586 (2015).
[Crossref]

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Ballato, J.

Baptista, J. M. T.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[Crossref] [PubMed]

Barlow, A. J.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

Berghmans, F.

Bernard, R.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Bigot, L.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Birch, R. D.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Bouazaoui, M.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Capoen, B.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Chahadih, A.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Cheng, W.-H.

Chou, T.-L.

Chu, P. L.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).

Chung, Y.

Cristini, O.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

De la Rosa, E.

Delaizir, G.

S. Leparmentier, J.-L. Auguste, G. Humbert, G. Delaizir, and S. Delepine-Lesoille, “Fabrication of optical fibers with palladium metallic particles embedded into the silica cladding,” Opt. Mater. Express 5(11), 2578–2586 (2015).
[Crossref]

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Delepine-Lesoille, S.

Dellith, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Divino, M. D.

Dong, X.

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

El Hamzaoui, H.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Fan, J.

Feng, X.

Folkenberg, J. R.

Foy, P.

Frazão, O.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[Crossref] [PubMed]

Fujita, M.

Grimm, S.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Han, W. T.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Hawkins, T.

Hosaka, T.

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Huang, S.-L.

Huang, Y.-C.

Humbert, G.

S. Leparmentier, J.-L. Auguste, G. Humbert, G. Delaizir, and S. Delepine-Lesoille, “Fabrication of optical fibers with palladium metallic particles embedded into the silica cladding,” Opt. Mater. Express 5(11), 2578–2586 (2015).
[Crossref]

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Kai, G.

Kawanishi, S.

Kim, B. H.

Kinowski, C.

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Kirchhof, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Klimek, J.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Kobelke, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Kubota, H.

Kudinova, M.

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Leich, M.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Leparmentier, S.

S. Leparmentier, J.-L. Auguste, G. Humbert, G. Delaizir, and S. Delepine-Lesoille, “Fabrication of optical fibers with palladium metallic particles embedded into the silica cladding,” Opt. Mater. Express 5(11), 2578–2586 (2015).
[Crossref]

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Limpert, J.

Lin, A.

Lin, Y.-S.

Litzkendorf, D.

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Liu, B.

Liu, C.-N.

Liu, Y.

Lo, F.-Y.

Ludwig, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Makara, M.

Mangan, B. J.

Marrone, M. J.

Martin, P. O.

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Martynkien, T.

McMillen, C.

Monzon, D.

Moon, D. S.

Morris, S.

Nasilowski, T.

Nielsen, M. D.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Olszewski, J.

Ortigosa-Blanch, A.

Osgood, R. M.

Payne, D. N.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

Pleibel, W.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Ramaswamy, V.

Rashleigh, S. C.

Rice, R.

Röser, F.

Russell, P. St. J.

Sammut, R. A.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).

Santos, J. L.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[Crossref] [PubMed]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

Schmidt, O.

Schreiber, T.

Schultz, H.

Schultz, P. C.

P. C. Schultz, “Optical Absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57(7), 309–313 (1974).
[Crossref]

Schuster, K.

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Schwuchow, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Shibata, N.

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Starodumov, A. N.

Statkiewicz, G.

Steel, M. J.

Stolen, R.

Stolen, R. H.

Suzuki, K.

Szpulak, M.

Tanaka, M.

Thienpont, H.

Tünnermann, A.

Urbanczyk, W.

Varnham, M. P.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

Wadsworth, W. J.

Wang, J.-S.

Wang, W.-L.

Wójcik, J.

Yuan, S.

Zenteno, L. A.

Zhang, W.

Zhou, G.

Zhu, L.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Int. J. Appl. Glass Sci. (1)

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, A. Schwuchow, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Am. Ceram. Soc. (1)

P. C. Schultz, “Optical Absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc. 57(7), 309–313 (1974).
[Crossref]

J. Appl. Phys. (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

J. Lightwave Technol. (5)

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).

N. Shibata, Y. Sasaki, K. Okamoto, and T. Hosaka, “Fabrication of polarization-maintainig and absorption-reducing fibers,” J. Lightwave Technol. 1(1), 38–43 (1983).
[Crossref]

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. LT-1(2), 332–339 (1983).
[Crossref]

M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Materials (Basel) (1)

J.-L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique based on the consolidation processing of powder materials for fabricating specialty optical fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

A. Chahadih, H. El Hamzaoui, O. Cristini, L. Bigot, R. Bernard, C. Kinowski, M. Bouazaoui, and B. Capoen, “H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms,” Nanoscale Res. Lett. 7(1), 487 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (2)

Sensors (Basel) (1)

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent Advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[Crossref] [PubMed]

Other (1)

M. J. Weber, Handbook of optical materials (CRC Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transmission spectra measured through 1.14 mm thick samples of SAL (red) and SALC (blue) glasses. Photographs of the different materials are shown in insets.
Fig. 2
Fig. 2 (a) Scheme of the fiber preform associating Stack-and-Draw and powder-in-tube technology. The distance between the core and the SAP is noted Δ1. (b) Evolution versus Δ1 of the fraction of power of the LP01 in the core and both SAP, and of the ratio (αLP01SAP) of the attenuation coefficient of LP01 mode over the absorption coefficient of the material in both SAP.
Fig. 3
Fig. 3 SEM (in the backscattered configuration) images of cross-sections of three optical fibers fabricated by the powder-in-tube process: (a) SAL fiber, (b) SALC fiber and (c) Air fiber. (d) Annotated scheme of the PM fiber.
Fig. 4
Fig. 4 3D-index profiles of cross-sections of polarization maintaining fibers (a) SAL fiber and (b) commercial fiber.
Fig. 5
Fig. 5 (a) Attenuation spectra of SAL (red) and SALC (blue) fibers. (b) Intensity distribution (two dimension pattern and profile) at the fibers output of the propagated light filtered around 1550 nm.
Fig. 6
Fig. 6 Optical microscope images of splices between of the SMF and (a) the Air fiber and (b) the SAL fiber (bubble’s maximum is 20 µm).
Fig. 7
Fig. 7 (a) Schematic of a high-birefringence FLM. (b) Transmission spectra of the interferometer with a SAL fiber length of 114.4 cm (red) and an Air fiber length of 113.8 cm (blue) inside the FLM. (c) Transmission spectra of the interferometer with SAL fibers with lengths of 114.4 cm (red), 48.8 cm (green) and 26.8 cm (blue) inside the FLM. (d) Transmission spectra of the interferometer with SALC fibers with lengths of 124.3 cm (red) and 71.3 cm (green) inside the FLM. The source spectrum (black curve) is an erbium-doped optical broadband source with a central wavelength at 1525-1575 nm (HWT-BS-C-P-2-FC/APC).
Fig. 8
Fig. 8 Simulated evolution of the evolution of the birefringence versus the size of SAP filled with SAL (red curve) or boron-doped silica (black curve). Measured birefringence of SAL fiber (red square) and commercial fiber (black square).

Tables (2)

Tables Icon

Table 1 Parameters of the fabricated and commercial fibers

Tables Icon

Table 2 Materials properties used in the simulations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B=  λ 2 ΔλL

Metrics